

Advantage CA-Easytrieve Plus
Report Generator

Reference Guide
6.4

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is for
the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by the
copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only
authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of the
license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and
effect. Should the license terminate for any reason, it shall be the user’s responsibility to return to CA the reproduced
copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct or
indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user’s
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or
DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

 2003 Computer Associates International, Inc.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

Chapter 1: Overview
Topics .. 1-1
Related Publications ... 1-2
Environment .. 1-3
Capabilities ... 1-3

File Access .. 1-3
Character Set Support .. 1-3
Field Definition .. 1-4
Logic Process .. 1-4
File Output .. 1-5
Report Output ... 1-5
Virtual File Manager ... 1-6
Debugging Capabilities... 1-6
Current Technology .. 1-7

Enhancement Summary .. 1-7
6.0 Enhancements .. 1-7
6.1 Enhancements .. 1-9
6.2 Enhancements ... 1-12
6.3 Enhancements ... 1-16
6.4 Enhancements ... 1-17

Chapter 2: System Overview
Structure of a Program ... 2-1

Environment Definition Section ... 2-1
Library Definition Section... 2-2
Activity Definition Section .. 2-2
Program Flow ... 2-5

Syntax Rules .. 2-7
Statement Area .. 2-7
Character Sets ... 2-8

Contents iii

Multiple Statements ...2-10
Comments ..2-10
Continuations ...2-11
Words and Delimiters..2-12
Keywords ..2-12
Multiple Parameters ...2-12
Field Names ..2-13
Labels ..2-13
EBCDIC Alphabetic Literals ..2-13
Numeric Literals ..2-14
EBCDIC Format Hexadecimal Literals ...2-14
DBCS Format Literals ..2-14
DBCS Format Hexadecimal Literals ...2-15
MIXED Format Literals ..2-15
Alphabetic Conversion Literals ...2-15
Katakana Conversion Literals...2-16
Hiragana Conversion Literals...2-17
User Converted Literals ..2-17
Format and Conversion Rules ..2-18
Format Relationship Rules ...2-20
Identifiers...2-21
Arithmetic Operators ..2-21

Chapter 3: Environment Definition
PARM Statement... 3-1

Environment Modification .. 3-1
Usage ... 3-1
PARM Statement Syntax .. 3-2
PARM Statement Parameters .. 3-5
PARM Statement Examples ..3-17

Chapter 4: Data Definition
FILE Statement... 4-2

Syntax... 4-3
Parameters... 4-4
File Type Parameters ... 4-5
Device Type Parameters... 4-9
Record Format Parameters ...4-11
Examples ...4-14

iv Reference Guide

DEFINE Statement.. 4-15
DEFINE within an Activity .. 4-15
File Fields .. 4-15
Working Storage Fields.. 4-16
Basic Field Definition.. 4-16
DEFINE Syntax ... 4-17
Parameters ... 4-18

DEFINE Statement Examples .. 4-24
Record Layouts ... 4-25
Overlay Redefinition .. 4-25
Working Storage Initialization ... 4-26
Varying Length Fields ... 4-26
Alternate Report Headings... 4-29
Signed/Unsigned Rules ... 4-29
Edit Masks ... 4-30
Leading Zeros .. 4-30
Negative Numbers .. 4-32

COPY Statement.. 4-32
Syntax ... 4-32
Example ... 4-32
COPY Rules for Database Files ... 4-33

Data Reference ... 4-34
Unique Name .. 4-34
Qualification ... 4-34

Indexing ... 4-35
System-Defined Fields .. 4-35

General Fields .. 4-35
File Fields .. 4-36
Report Fields ... 4-36

Chapter 5: Processing Activities
JOB Statement ... 5-1

Syntax .. 5-2
Parameters .. 5-2
Job Flow .. 5-4

SORT Statement ... 5-7
Syntax .. 5-7
Parameters .. 5-8
Sorting Files .. 5-14
Sort Procedures ... 5-15

Contents v

Sort Flow ...5-16
SELECT Statement ..5-18

Syntax..5-18
Sorting a Selected Portion of a File ..5-18

Chapter 6: Assignments and Moves
Arithmetic Expressions ... 6-1

Syntax... 6-1
Operation.. 6-2
Parentheses .. 6-2
Evaluations .. 6-3

Assignment Statement .. 6-4
Format 1 (Normal Assignment) .. 6-5
Format 2 (Logical Expression) ... 6-7
Examples .. 6-7
EBCDIC To DBCS Conversion ... 6-9
Format 1 (Normal Assignment) .. 6-9

MOVE Statement..6-13
Syntax..6-13
Variables ...6-14
Example ..6-15

MOVE LIKE Statement ..6-15
Syntax..6-15
Operation...6-15
Example ..6-16

Chapter 7: Decision and Branching Logic
Conditional Expressions .. 7-1

Simple Conditions .. 7-2
Extended Conditions ... 7-2
DBCS Considerations ... 7-3
Varying Length Fields .. 7-3
Combined Conditions... 7-3

Field Relational Condition .. 7-4
Syntax... 7-4
Operation.. 7-4
Alphanumeric Subjects.. 7-5
Numeric Subjects... 7-5
Mixed Subjects ... 7-5

vi Reference Guide

DBCS Subjects ... 7-6
Example .. 7-7

Field Series Condition.. 7-7
Operation ... 7-8
Rules for Evaluation.. 7-8
Example .. 7-9

Field Class Condition .. 7-9
Syntax .. 7-9
Operation .. 7-10
Rules for Evaluation... 7-10
Example ... 7-12

Field Bits Condition... 7-13
Syntax ... 7-13
Operation .. 7-13
Example ... 7-14

File Presence Condition ... 7-14
Syntax ... 7-14
Operation .. 7-14
Example ... 7-15

File Presence Series Condition ... 7-16
Syntax ... 7-16
Operation .. 7-16
Example ... 7-16

Record Relational Condition ... 7-17
Syntax ... 7-17
Operation .. 7-17
Example ... 7-18

IF, ELSE-IF, ELSE, and END-IF Statements .. 7-18
Syntax ... 7-18
Operation .. 7-19
Example ... 7-20

DO and END-DO Statements .. 7-22
Syntax ... 7-22
Operation .. 7-22
Nesting .. 7-23
Example ... 7-24

CASE Statement .. 7-25
Syntax ... 7-25
Operation .. 7-25
Example ... 7-27

GOTO Statement ... 7-27

Contents vii

Syntax..7-27
Operation...7-27
Example ..7-28

Statement Label ...7-28
Syntax..7-28
Operation...7-29
Example ..7-30

PERFORM Statement ..7-31
Syntax..7-31
Operation...7-31
Example ..7-31

STOP Statement...7-32
Syntax..7-32
Operation...7-32
Example ..7-32
Conditional Execution ...7-32
Example ..7-33
Termination...7-33

Chapter 8: Input/Output Specification
DISPLAY Statement .. 8-2

Syntax... 8-2
Parameters... 8-3
Example ... 8-7

GET Statement ... 8-8
Syntax... 8-8
Operation.. 8-8
Example ... 8-8

POINT Statement .. 8-9
Syntax... 8-9
Operation.. 8-9
Example ..8-10

PRINT Statement..8-10
Syntax..8-10
Operation...8-11

PUT Statement ..8-12
Syntax..8-12
Operation...8-12

READ Statement ..8-12
Syntax..8-13

viii Reference Guide

Operation .. 8-13
Example ... 8-13

WRITE Statement... 8-14
Syntax ... 8-14
Example ... 8-15

Chapter 9: Procedure Processing
Procedure Syntax .. 9-1

Syntax .. 9-2
Operation ... 9-2

Invoking Procedures ... 9-3
PERFORM Statement .. 9-3

Syntax .. 9-3
START and FINISH Parameters (JOB) ... 9-3

START .. 9-3
FINISH ... 9-4

BEFORE Parameter (SORT) ... 9-4
BEFORE proc-name .. 9-4

Special-name Report Procedures .. 9-4
Procedure Placement... 9-5

Example .. 9-5

Chapter 10: Report Processing
Basic Report Structure... 10-2

PRINT Statement Processing ... 10-2
PRINT Workfile Processing .. 10-3
Report Formats ... 10-4
Standard Format .. 10-4
Label Format ... 10-5
DBCS Reporting Restrictions ... 10-5
Report Definition Statements... 10-6
Structure of Report Definition .. 10-7

REPORT Statement ... 10-7
Syntax ... 10-8
REPORT Statement Parameters... 10-9
DBCS/MIXED Considerations .. 10-17
Varying Length Field Considerations .. 10-17

Report Definition Statements ... 10-17
SEQUENCE Statement ... 10-18

Contents ix

Syntax...10-18
Operation..10-18

CONTROL Statement...10-23
Syntax...10-23
Operation..10-23

SUM Statement ..10-24
Syntax...10-24
Operation..10-25

TITLE Statement ...10-25
Syntax...10-25
Operation..10-26

HEADING Statement...10-28
Syntax...10-28
Operation..10-28

LINE Statement ..10-29
Syntax...10-29
Operation..10-29

Standard Reports...10-31
Titles ..10-31
Headings ..10-33
Line Group ..10-34
Line Item Positioning ...10-35
Special Positioning ...10-36
Pre-printed Form Production ..10-37
SPREAD Option..10-38

Label Reports ..10-39
CONTROL Statement ...10-40

Sequenced Reports ...10-41
SEQUENCE Statement ..10-41

CONTROL Reports...10-42
Terminology ...10-42
Data Reference ...10-42
TALLY ..10-43
LEVEL ..10-43
BREAK-LEVEL...10-44
IF BREAK/IF HIGHEST BREAK Processing ..10-44
Control Report Contents ..10-45
DTLCTL ...10-47
SUMCTL ..10-49
DTLCOPY ...10-51
DTLCOPYALL ...10-53

x Reference Guide

Control Field Values in Titles ... 10-53
Overflow of Total Values ... 10-55
Controlling Overflow .. 10-56
Summary File.. 10-58

Report Procedures ... 10-60
Coding Techniques... 10-60
Special-name Report Procedures .. 10-62
REPORT-INPUT ... 10-63
BEFORE-LINE and AFTER-LINE.. 10-65
BEFORE-BREAK... 10-67
AFTER-BREAK .. 10-68
ENDPAGE .. 10-69
TERMINATION ... 10-70

Report Work Files ... 10-71
Routing Printed Output .. 10-72

Chapter 11: File Processing
Control of Input/Output .. 11-1
Data Access Modes ... 11-2
Record Format ... 11-2

CARD, PUNCH, and VSAM ... 11-3
Record Addressability... 11-3
System-Defined File Fields .. 11-3
Error Conditions.. 11-4
Data Availability Tests .. 11-5
Opening and Closing Files... 11-5
SAM Files.. 11-5

SAM Input ... 11-6
SAM Output.. 11-7

ISAM Files ... 11-8
Automatic Processing ... 11-8
Controlled Processing ... 11-9
Skip-Sequential Processing... 11-9
Random Processing .. 11-10

VSAM Files ... 11-10
File Creation... 11-11
VSAM Input... 11-11
VSAM Record Addition .. 11-13
VSAM Record Deletion ... 11-14
VSAM Record Update .. 11-14

Contents xi

Virtual File Manager ...11-15
Synchronized File Processing..11-16

Synchronized File Input...11-16
Special IF Statements ...11-19
Updating a Master File..11-20
Single File Keyed Processing ..11-21

Host Disk Files...11-22
Host Disk Definition ..11-22
Host Disk Formats..11-23
Writing to the Host Disk File ..11-23
Host Disk File Processing ...11-24
Examples ..11-25

Chapter 12: Table and Array Processing
Table Definition...12-1

Defining Tables ...12-2
SEARCH Statement ...12-3

Syntax..12-3
Operation...12-3
Searching Tables ..12-4

Single Dimension Arrays...12-5
Index Attribute..12-5
Example ..12-5

Multiple Dimension Arrays ..12-7
Subscripts ...12-10

Defining a One-Dimension Array ..12-11
Defining a Two-Dimensional Array ..12-11
Defining a Three-Dimensional Array ...12-12
Using Subscripts ...12-13

Segmented Data..12-13
Data Strings ...12-15

Chapter 13: Subprograms
Programming Languages ..13-1

Program Loading..13-2
Storage Management ..13-3
Addressing Mode Considerations...13-3
Linkage (Register Usage) Conventions ..13-4

Linkage Register Usage ..13-4

xii Reference Guide

Register Save Area Usage .. 13-4
Assembler Subprogram Linkage.. 13-5
COBOL Subprogram Linkage .. 13-5
VS FORTRAN Subprogram Linkage .. 13-8
PL/I Subprogram Linkage ... 13-8

Parameter Lists ... 13-8
Parameter List Format... 13-8
Exit Parameter List .. 13-9

CALL Statement ... 13-11
Syntax .. 13-11
Operation ... 13-11
CALL Parameter Lists .. 13-12

LE-Enabled Support ... 13-12
Calling COBOL .. 13-13
Calling Assembler ... 13-13
Calling LE CEEExxxx Routines .. 13-13
Calling PL/I... 13-13
File Exit Programs ... 13-14

Error Condition Handling .. 13-14

Chapter 14: System Facilities
Compiler Directives... 14-2

End.. 14-2
Syntax ... 14-2

Utility Programs.. 14-2
EZTPX01 ... 14-2
EZTPX03 ... 14-3
EZTPX04 ... 14-3
EZTPX05 ... 14-3

Compile Listing .. 14-3
Header... 14-4
Statement Listing ... 14-4
Listing Control Statements ... 14-5
LIST ... 14-5
NEWPAGE... 14-6
SKIP ... 14-6
PUSH.. 14-6
POP ... 14-6
Example ... 14-7
Diagnostic Format .. 14-7

Contents xiii

Parameter (PARM) Listing ...14-7
CLIST ..14-8
DMAP..14-9
PMAP ...14-12
XREF..14-12

Execution Listing...14-13
File Statistics ...14-13

Abnormal Termination ...14-13
Diagnostic Messages..14-14
Error Analysis Report...14-15
Cause A Data Exception...14-16
Analyzing the Report ...14-17

Chapter 15: Macros
Macro Invocation Statement..15-1

Syntax..15-1
Invoking Macros ..15-2

Macro Library ..15-3
Macro Library Security...15-3

Macro Definition ..15-5
Prototype Statement ...15-6
Syntax..15-6
Operation...15-7
Positional Parameters ..15-7
Keyword Parameters ..15-7
Prototype Examples ...15-7
Macro Body...15-8
Macro Termination Command..15-8

Instream Macros ..15-8
Syntax..15-9
Operation...15-9
Example ..15-9

Macro Processing ..15-10
Parameter Substitution..15-11
Examples ..15-11
‘&’ and ‘.’ in a Macro..15-12

Appendix A: Utility Macros
CBLCNVRT .. A-1

xiv Reference Guide

Syntax ..A-1
Operation: Standalone-Report...A-3
Operation: Database..A-3
Limitations ..A-3
Glossary Table Generation ..A-4
Examples..A-5

STRSRCH...A-8
Syntax ..A-9
Operation: Inline..A-10
Operation: Database...A-10
Notes ..A-10

Appendix B: Diagnostics
Operational Diagnostic Messages ... B-1
Syntax Diagnostic Messages .. B-9
CBLCNVRT Messages .. B-42
DQSCGEN Messages ... B-43
IDD Interface Messages ... B-44
SQL Supplemental Diagnostic Messages .. B-46

Appendix C: Keywords
Symbol References... C-1
Reserved Words ... C-3

Appendix D: Options Table
Selectable Options ...D-1

Appendix E: Examples
Coding Conventions ... E-1
Inventory Sample File .. E-2
Personnel Sample File .. E-3
GETDATE Macro ... E-10
Basic Examples ... E-11

Example 1: Employees in Region 1.. E-11
Example 2: Proposed Salary Schedules .. E-12
Example 3: Employee Letters... E-15

Contents xv

Example 4: Mailing Labels..E-19
Example 5: Tally Reports ...E-20
Example 6: Phone Number Selection ..E-26
Example 7: Salary Tally Report ...E-27
Example 8: File Expansion..E-29
Example 9: Average Regional Gross Salary...E-31
Example 10: Central Region Employees..E-33
Example 11: Inventory Report by City ...E-37
Example 12: Expanded Inventory Report ..E-39
Example 13: Error Correction ...E-42
Example 14: Inventory Reduction ...E-43
Example 15: Inventory File Update ..E-46
Example 16: Reorder Notification Report ..E-49

CA-Easytrieve/Earl ...E-55
Syntax..E-55
Parameters..E-55
Usage Notes ..E-56
Sample CA-Easytrieve/Earl Exit ..E-56

JCL Examples for the OS/390 and z/OS Operating System......................................E-57
SYSIN ..E-57
SYSPRINT ..E-57
PANDD1 ...E-58
MASTER1 ..E-58
EZTVFM ...E-58
SORTWKnn...E-59
SYSLIN...E-59
SYSOUT ..E-60
STEPLIB ..E-60
sysctl ...E-60
sysjrnl ..E-60
sysidms ..E-61
idmsdb ...E-61
idmsdict ..E-61
SYSSNAP...E-61
SYSUDUMP ..E-62
userfiles ..E-62
KJSRTBL ...E-62
KJSYSOUT..E-63
KATTR ...E-63
JCL Examples: OS/390 and z/OS JCL Systems...E-63

JCL Examples for the VSE Operating System...E-67

xvi Reference Guide

SYSIPT... E-67
SYSLST .. E-68
PANDD1... E-68
MASTER1 .. E-68
EZTVFM ... E-69
SORTWKn ... E-69
SYSLNK ... E-70
userfiles.. E-70
CA-IDMS .. E-70
sysjrnl ... E-70
sysidms .. E-71
idmsdb .. E-71
idmsdict ... E-71
UPSI ... E-71
JCL Examples: VSE JCL Systems ... E-72

Appendix F: Four-Digit Year Support
DATECONV .. F-1

Syntax .. F-1
Parameters .. F-2
Operation: INLINE... F-3
Operation: Database.. F-3
Example .. F-3

DATEVAL .. F-3
Syntax .. F-4
Parameters .. F-4
Operation: INLINE... F-5
Operation: Database.. F-5
Example .. F-6

Index

Contents xvii

Chapter

1 Overview

CA-Easytrieve Plus is an information retrieval and data management system
designed to simplify computer programming. Its English-like language and
simple declarative statements provide the new user with the tools needed to
produce comprehensive reports with ease, while its enhanced facilities provide
the experienced data processor with the capabilities to perform complex
programming tasks.

This Reference Guide is designed for use by you, the programmer. It assumes that
you are familiar with the CA-Easytrieve language and understand basic data
processing concepts.

Topics
This guide discusses the following topics:

■ The structure of a CA-Easytrieve Plus program

■ The syntax rules of CA-Easytrieve Plus statements

■ The PARM statement and how it can customize the operating environment
for the duration of a program's compilation and execution

■ Methods of defining data.

■ JOB and SORT processing activities

■ Ways to move or manipulate data within your program using Assignment,
MOVE, and MOVE LIKE statements

■ Decision and branching logic

■ Controlled input and output processing

■ Using procedures your program

■ Report processing using the PRINT statement

■ The processing of sequential, random, multiple input, and Host Disk files

■ File-oriented table information, arrays, segmented data, and data strings

■ Using subprograms of other languages.

Overview 1–1

Related Publications

■ The format of compilation listing options, execution listings, and the
abnormal termination facilities

■ Macros

■ Diagnostic messages

■ Reserved words and symbols

■ Options Table

■ Four-digit year support

Related Publications
The following publications, produced by Computer Associates, are either
referenced in this documentation or are recommended reading:

■ CA-Pan/SQL SQL Interface Getting Started

■ CA-Corporate Tie Installation Guide

■ CA-Panvalet System Management Guide

■ CA-Librarian Command Reference (Batch) Manual

■ CA-Librarian Lock Facility Manual

The following publications, not produced by Computer Associates, are either
referenced in this publication or are recommended reading:

■ IBM VSE/VSAM Messages and Codes Manual

■ IBM DOS Supervisor and I/O Macro Manual

■ IBM OS Data Management Macro Instructions Manual

■ IBM VSAM Programmer's Guide

■ DBMS Programmer's Guide

■ CMS Command and Macro Reference Manual

■ SQL/DS Messages and Codes for VSE (SH24-5019)

■ SQL/DS Messages and Codes for VM/SP (SH24-5070)

■ IBM Database 2 Messages and Codes (SC26-4113)

■ ORACLE Error Messages and Codes Manual (3605)

■ IBM SQL Message Manuals

■ IBM Program Description and Operation Manual

■ FACOM Sort/Merge Program Description Manual

■ IBM Sort/Merge Program - Kanji/Chinese Manual

1–2 CA-Easytrieve Plus Reference Guide

Environment

Environment
CA-Easytrieve Plus operates on the IBM 370, 30xx, 43xx, and compatible
processors in the VSE/SP, VSE/ESA, MVS/SP, MVS/XA, MVS/ESA, or
VM/CMS environments. Under TSO, CMS, and ICCF, it can run interactively for
data inquiry, analysis, and reporting. The output can be either returned back to
your terminal screen or routed to a printer.

Capabilities
Extensive capabilities provide you with more benefits than those available in
standard information retrieval systems. CA-Easytrieve Plus has the capabilities
of a retrieval system as well as the comprehensiveness and flexibility required
for complex reports, data extraction and file maintenance requirements.

File Access

The file access features of CA-Easytrieve Plus provide all standard retrieval
system capabilities, plus the following:

■ Accepts up to 890 input or output files.

■ Synchronizes file processing (based on keys) of an unlimited number of files,
including matched conditions and duplicate checking. This reduces complex
matching logic down to one statement.

■ Tests for file availability and current record count.

■ Prints statistics on files used, including number of records processed and
attributes of each file.

■ Provides in-core binary search of external or instream table files.

■ Prints file status and error analysis report at point of error during abnormal
termination.

■ Provides an easy method for establishing temporary work files without
special job control or file allocation statements.

Character Set Support

Both Expanded Binary Coded Decimal Interchange Code (EBCDIC) and Double
Byte Character Set (DBCS) character representations are supported. EBCDIC is a
character set system that associates one character with a particular 8-bit binary
value. This means that each EBCDIC character occupies one unit of storage;
therefore EBCDIC is termed as a single-byte character set. EBCDIC supports the
definition of 256 different characters.

Overview 1–3

Capabilities

For languages based on the Chinese system of writing, the character set may
include 50,000 different characters. To represent such a character set, each
character is associated with a particular 16-bit binary number. This means that
two units of storage are occupied to represent a single character and thus the
name Double Byte Character Set.

Field Definition

The methods used to define all types of record structures and field formats are
consistent and easy to use, including:

■ Defining all field formats, including binary and unsigned packed fields.

■ Supporting alphanumeric field types containing both EBCDIC and DBCS
format data plus a MIXED field type for those fields that contain a mixture of
both EBCDIC and DBCS format characters.

■ Providing flexible edit masks for report formats or displaying data,
including blank-when-zero, automatic DBCS conversion, and hex display.

■ Establishing EBCDIC, DBCS, and MIXED initial values for working storage
fields.

■ Providing default report headings to enhance standards.

■ Allowing multiple use of field definitions with the COPY keyword, reducing
coding and maintenance.

Logic Process

The purpose of any information retrieval and application development system is
to provide complete conditional logic. CA-Easytrieve Plus provides this logic,
plus the following:

■ Provides standard programming constructions, such as nested IFs, DO
WHILE, and PERFORM statements.

■ Provides powerful calculation capabilities, including bit manipulation.

■ Performs special tests useful in editing, including alphabetic, numeric,
spaces, zero, and test under mask.

■ Enables string manipulation.

■ Supports move for corresponding fields.

■ Includes special one-time procedures for start of processing and finish of
processing.

■ Sorts on any number of keys.

1–4 CA-Easytrieve Plus Reference Guide

Capabilities

File Output

Routine file maintenance is faster and simpler because of the enhanced
capabilities of CA-Easytrieve Plus including:

■ Loading and updating files, including VSAM, IMS/DLI, CA-IDMS, and
SQL.

■ Saving report extract work files for subsequent use.

■ Providing a selective hex dump of a file or specific fields.

Report Output

The reporting features make producing reports a simple, uncomplicated process.
The flexibility built into the system through specialized report procedures makes
it easy to produce customized reports without compromise. CA-Easytrieve Plus:

■ Produces unlimited reports from a single pass of the data.

■ Automatically formats reports including where character output sizes vary
due to different data types (EBCDIC and DBCS formats) and font
specifications.

■ Provides customizing alternatives to all report format features.

■ Provides mailing labels of any size.

■ Provides control breaks on any number of keys.

■ Automatically creates a summary file containing subtotals.

■ Processes only those fields that are required by your REPORT statements.

■ Generates reports to separate logical printers or other output media.

■ Provides control break level access for special logic processing, which is
useful when only certain report lines are to be generated for certain specific
levels of control breaks.

■ Provides specialized report procedures for user flexibility (BEFORE/AFTER
LINE, ENDPAGE, TERMINATION, BEFORE/AFTER BREAK, REPORT
INPUT).

■ Allows for explicit positioning of print layout for pre-printed forms.

Overview 1–5

Capabilities

Virtual File Manager

VFM provides an easy method for establishing temporary work files without
special job control or file allocation statements. By using VFM, you can establish
your own extract or temporary files using only CA-Easytrieve Plus keywords.
VFM's own data management techniques ensure its operating efficiency
standards, including:

■ Maintaining more information in memory. If the memory area is exhausted,
VFM writes the excess data to a single spill area.

■ Defining only one physical file.

■ Determining the best blocking factor based on device type, providing a 90
percent disk utilization.

■ Releasing and recovering occupied space as the virtual file is read back into
your program.

■ Automatically spooling files created as a result of sequenced reports or
multiple reports in the same activity.

Debugging Capabilities

The debugging aids ensure that all information necessary to pinpoint the cause
of an abnormal termination is easily readable by:

■ Providing an error analysis report which pinpoints most errors immediately
including the source statement number in error and/or a FLOW table of
what statements were executed in what series.

■ Providing optional data processing oriented displays, such as DMAPs and
PMAPs.

■ Trapping invalid file references during execution to prevent a system dump.

1–6 CA-Easytrieve Plus Reference Guide

Enhancement Summary

Current Technology

The latest in programming technology includes:

■ Mapping programs in 4 KB segments.

■ Mapping working storage on double word boundary.

■ Providing a one-pass compiler.

■ Directly generating the object code.

■ Providing PUSH/POP facilities for MACRO.

■ Providing security on VSAM, IMS, and CA-IDMS usage.

■ Automatic EBCDIC to DBCS conversion facilities plus user exits for
implementing Phonetic Translation routines.

Enhancement Summary
To use this product to its fullest potential, take advantage of the following
enhancements.

6.0 Enhancements

INTEGER/ROUNDED/TRUNCATED on Assignment Statement

These options provide the following capabilities:

■ Automatic fraction drop in calculation results or assigns

■ Automatic fraction rounding in calculation results

■ Digit truncation during an assign

Use the INTEGER feature with ROUNDED or TRUNCATED. Additional
calculations and multiple assignment statements previously required to perform
these functions are no longer needed.

Working Storage Reinitialization

A RESET option on the DEFINE statement lets you specify that W working
storage fields be initialized automatically for each execution of a JOB or SORT
statement.

Overview 1–7

Enhancement Summary

Single File Keyed Processing

The synchronized file processing facility lets you perform single file keyed
processing. This lets you compare the contents of a key field from one record to
the next and group records using IF tests.

Varying Length Fields

A new option in the DEFINE statement provides support for variable length
alphanumeric fields. You can specify file fields and working storage fields as
VARYING. When referencing them in job statements, the program uses only the
portion of the data specified by the field’s length. You can also reference the
length and data portions separately.

Enhanced Data Map

The Data Map (DMAP) function of the compile listing facility provides a table of
all files and fields in your job. The enhanced DMAP displays all pertinent
information on level, redefinition, key fields, external databases, headers, and
masks. Imported field definitions also import appropriate information to the
expanded DMAP.

Enhanced PANVALET Macro Interface

A new CONTROL record provides support for CA-Panvalet library control
codes. The control record lets you access a secured CA-Panvalet library only if
you provide the correct code.

Enhanced Installation Procedures

Enjoy our new streamlined installation and be sure to use the installation
checklist in the Getting Started.

Enhanced DB2 Interface

The interface has been enhanced in three areas:

■ Include Interface—The SQL include interface provides a means to
automatically generate field definitions from the SQL catalog. This
eliminates the need to code host variable definitions in the library section of
your program.

■ Static SQL—The DB2 interface (for OS/390, z/OS, and VSE) supports DB2
static SQL in addition to the existing dynamic SQL to provide enhanced
machine efficiency.

1–8 CA-Easytrieve Plus Reference Guide

Enhancement Summary

■ SSID—The former DB2SSID parameter in the Options Table and on the
PARM statement is now named SSID. The old parameter, DB2SSID, is still
supported for compatibility.

ORACLE Database Processing

The ORACLE interface provides complete facilities for information retrieval and
maintenance of ORACLE databases. This interface is very similar to the DB2 and
SQL/DS interface option.

FILE Statement for SQL

An SQL select clause can be coded on a FILE statement.

Extended Checkpoint/Restart Facility for IMS

This facility provides IMS users with a method for periodically saving and
restoring the current execution environment of their CA-Easytrieve Plus
programs. The saved information includes working storage fields, internal
storage fields, and IMS database repositioning data.

IDD Optional Start Location

You can specify the location to send a field definition generated by the IDD
RECORD statement.

Virtual File Manager

The default storage for the buffer pool in VFM is 64 KB. VFM is also not sensitive
to an over-allocation of storage.

6.1 Enhancements

CASE Statement

This statement conditionally executes one of several alternative groups of
statements based on the value of a specified field.

Overview 1–9

Enhancement Summary

DO UNTIL Statement

This statement is an alternative to the DO WHILE statement, providing an
alternative method to perform repetitive looping.

ELSE-IF Statement

This statement tests alternate conditions in an IF statement without nesting
END-IFs.

Called Programs with 31-bit Address Support

The product is able to call programs that execute or reference data above 16 MB
in MVS/XA.

Integration with CA-Corporate Tie

Access to the CA-Corporate Tie Host Disk means you can access mainframe data
in a PC format. The Host Disk is supported as a file in CA-Easytrieve Plus, and
you can PUT data to that file. You can also print reports to the Host Disk.

VSAM SUMFILE

The REPORT statement’s SUMFILE parameters accept ESDS, KSDS, and RRDS
VSAM files. SUMFILE records are written in mass sequential insert mode.

CA-IDMS Dynamic Loading

CA-IDMS customers can dynamically load the CA-IDMS modules that are
normally linked with this product. This provides easier maintenance in
coordination with new releases of CA-IDMS.

Options Table Support of Date and Time Separator Characters

The Options Table lets you specify date and time separator characters to confirm
to international standards.

List of Future Reserved Words

To help you plan for the addition of several new reserved words in the next
release, a list of the words is supplied. See the appendix “Keywords” for a list of
the words.

1–10 CA-Easytrieve Plus Reference Guide

Enhancement Summary

Enhanced DB2 Interface

The interface has been enhanced in five areas.

■ Options Table Specification of SQL Binding—The Options Table lets you
specify STATIC, DYNAMIC, or ANY for SQL bind options to control user
execution of SQL programs.

■ SET CURRENT SQLID Statement—Specify an implicit qualifier of all table,
view, or index names specified in SQL programs.

■ Size Restriction Removal—There is no longer a 4 KB size restriction on SQL
statements.

■ Standalone SQL Interface—Use a generic interface for CA-Pan/SQL and
CA-Easytrieve Plus.

■ SQL Gross Level Syntax Checking—Bypass DB2 checking of SQL
statements until the execution of a statement.

Disk Drive Support

We support 3390 disk drives, but not 2311 or 2314 disk drives. We also no longer
support for DOS/VS(E) releases prior to 2.1 and OS/VS1.

Display Page Size

The PAGESIZE parameter of the REPORT statement includes a new
subparameter, display-page-size. display-page-size sets the number of lines per
page for REPORT procedure DISPLAY statements. A DISPLAY in one of the
following REPORT procedures compares the current line count to
display-page-size, issues a new page and title if necessary, and prints the
DISPLAY:

■ REPORT-INPUT

■ BEFORE-LINE

■ AFTER-LINE

■ BEFORE-BREAK

■ AFTER-BREAK

In addition, when display-page-size is not zero, the behavior of the
BEFORE-LINE procedure is changed. It is executed, then a LINE is formatted,
causing the BEFORE-LINE procedure to alter what a LINE prints. When
display-page-size is zero, the BEFORE-LINE procedure behaves as it has in
previous releases.

Overview 1–11

Enhancement Summary

IBM SMS BLKSIZE=0 Support

Specify the BLKSIZE=0 parameter in JCL, or specify no BLKSIZE parameter at all
so that the IBM System Managed Storage (SMS) defined BLKSIZE is used. This
feature is supported in the FB subparameter of the FILE statement.

IBM Dynamic Partitions for VSE/ESA Support

You can run programs in the new Dynamic Partitions of the VSE/ESA operating
system.

6.2 Enhancements

Expanded SQL Processing

The SQL interface has been expanded to:

■ Support CA-IDMS/SQL and CA-Datacom/SQL. This provides complete
SQL access for retrieval and maintenance of databases.

■ Support of DB2 for OS/390 and z/OS version 3.1 SQL commands.

■ Support of DB2 for VSE version 3.2 SQL commands.

IF BREAK/HIGHEST BREAK Class Tests

New IF BREAK/HIGHEST BREAK class tests can be used as alternatives to IF
LEVEL testing in report break procedures.

RETURN-CODE for VSE

RETURN-CODE is a system-defined four-byte binary field. When set in a
CA-Easytrieve Plus program, the contents of RETURN-CODE are returned to the
operating system when the program completes. This facilitates conditional
execution of subsequent JCL steps.

CA-Librarian Macro Support

The Macro Facility enables you to store and retrieve macros directly to or from
CA-Librarian.

1–12 CA-Easytrieve Plus Reference Guide

Enhancement Summary

New CONTROLSKIP Parameter on the REPORT Statement

For use with CONTROL reports, the value of the CONTROLSKIP parameter on
the REPORT statement determines the number of blank lines to be inserted
between total lines and the next detail line.

Read Access to LINE-COUNT and PAGE-COUNT

Logic is performed based on the contents of the system-defined fields,
PAGE-COUNT and LINE-COUNT. The most common use of this is in report
procedures whenever automatic report printing of CA-Easytrieve Plus is being
augmented by DISPLAY statements.

RESET Parameter on FILE Statement

A new RESET parameter has been added to the FILE statement to use with the
overwrite feature in version 2.1 of CA-Corporate Tie. RESET forces a file of the
same name that exists on the Host Disk to be overwritten.

Default Disk Type (VSE Only)

The default type of disk has been changed from 3340 to 3380. This value is used
when DISK is specified for site options VFMDEV, DEVICE, or MACDEV, or
when you specify the DISK option on a FILE statement.

EVEN Parameter on DEFINE Statement

The new EVEN parameter on the DEFINE statement indicates that a packed
decimal field is to contain an even number of digits.

HEADING Parameter in the SQL INCLUDE Statement

The new HEADING parameter on the SQL INCLUDE statement automatically
causes the remarks in the DBMS system catalog entry for a column to be copied
into a HEADING parameter of the generated DEFINE statement.

WITH HOLD Option on SQL DECLARE CURSOR Statement (DB2 for OS/390 and z/OS Only)

Support has been added for the WITH HOLD option on the SQL DECLARE
CURSOR statement. This permits the application program to monitor cursor
positioning across SQL commits.

Overview 1–13

Enhancement Summary

CONNECT Statement Improves Data Access

Use of the CONNECT statement with IBM's Distributed Relational Database
Architecture (DRDA) enables a CA-Easytrieve Plus program running on the
mainframe to access, update, and report on data at multiple remote relational
database management systems within a single job.

SQLSYNTAX Parameter on PARM Statement

You can specify an SQLSYNTAX value of NONE and a BIND option of
STATIC-ONLY to bypass the dynamic prepares of your SQL statement, along
with the DB2 for OS/390 and z/OS authorization checking at compile time. SQL
statements are then syntax checked by the DB2 for OS/390 and z/OS
preprocessor.

For all databases, an SQLSYNTAX value of PARTIAL can be specified to
perform gross-level syntax checking in the case where your DBMS is not
available.

PLAN Parameter on PARM Statement (DB2 for OS/390 and z/OS Only)

You can specify separate values for both the DB2 for OS/390 and z/OS plan and
the static-command-program. This enables the implementation of DB2 for
OS/390 and z/OS packages for your CA-Easytrieve Plus SQL programs.

PLANOPTS Parameter on PARM Statement (CA-Datacom SQL only)

You can provide the SQL Interface with an Options Module to specify your
CA-Datacom SQL options for the new plan.

SELECT INTO Support (DB2 for OS/390 and z/OS Only)

The SQL SELECT INTO statement is supported if a PARM SQLSYNTAX value of
NONE is specified with PARM BIND STATIC-ONLY. This enables you to code
Singleton Select statements and avoid coding DECLARE CURSOR statements.

DB2 - DL/I Batch Support

DB2 - DL/I synchronization is achieved through the use of DB2-DLI Batch
Support rather than the DB2 Call Attach. You specify which mode of execution
with the new DLI SQL parameter of the Execution Options Table.

1–14 CA-Easytrieve Plus Reference Guide

Enhancement Summary

IDD Updating

The relationships between CA-Easytrieve Plus programs and dictionary entities
are maintained by updating the IDD at compile time. Unless the subschema
requires it, registration can be bypassed by coding the RETRIEVAL parameter on
the IDD statement.

IDMS RETURN KEY Support

The IDMS RETURN statement supports retrieving a record's symbolic key.

SQL with CA-IDMS

CA-Easytrieve Plus programs can access, report, and update CA-IDMS
information using SQL statements with the CA-IDMS version 12.0 SQL option.

CA-Datacom SQL Support

SQL statements provide direct access to CA-Datacom/DB if you have version 8.0
or higher of CA-Datacom/DB with the SQL option.

Support of IBM's SMS BLKSIZE=0 Feature for PRINTER Files

Specifying BLOCK0=P in the Options Table, permits the operating system to
determine the optimum blocksize for PRINTER files when logical record length
and blocksize are not included on the FILE statement.

Additional Support of IBM's SMS BLKSIZE=0 Feature for Disk and Tape Files

Specifying BLOCK0=D in the Options Table, permits the operating system to
determine the optimum blocksize for disk and tape data sets when logical record
length and blocksize are not included on the FILE statement and DSORG is not
included on the DD statement in the JCL.

Four-Digit Year Support

A new system-defined field has been added that contains the century.
SYSDATE-LONG is a 10 A field and is the same format as SYSDATE except that
the year is prefixed with the century. Like SYSDATE, the format of the data is
controlled by the Options Table value DATE= and SEPDATE=.

Two new options have been added to the REPORT statement. They are
SHORTDATE and LONGDATE. With SHORTDATE, the date on reports is
displayed using a two-digit year. With LONGDATE, the date on reports is
displayed using the century and the two-digit year.

Overview 1–15

Enhancement Summary

A new option has been added to the Options Table to specify the default date
that appears on REPORTs. The new option is LONGDTE and the default is
LONGDTE=NO.

The compile listing displays SYSDATE or SYSDATE-LONG depending on the
LONGDTE value in the Options Table.

6.3 Enhancements

Suppress Leading Zeroes

The Options Table lets you specify the leading character in the DATE edit mask
as either a character 0 or a blank in MVS. VSE standards are to give the date with
a leading zero.

Empty VSAM File Processing

Empty VSAM files can be handled without termination, giving programmers the
ability to control and take corrective action from within the program. The type of
control depends on whether the program is using Automatic or Controlled input
processing.

Note: This does not apply to files that specify UPDATE on the FILE statement.

Automatic Input

When an empty file condition is encountered during Automatic Input, the JOB
activity ends and processing continues with the normal end-of-job processing.
This is consistent with other filetypes.

Controlled Input

To control the processing for Controlled Input, you can use the STATUS option
on the I/O statement and then check the FILE-STATUS field for a status of 160
(OS/390 and z/OS) or 110 (VSE). You can also use the IF NOT filename or the IF
EOF filename to determine if the file is empty and then take an appropriate
action.

HIGH-VALUES/LOW-VALUES Reserved Words

Two new reserved words: HIGH-VALUES and LOW-VALUES let you test for
these instances.

1–16 CA-Easytrieve Plus Reference Guide

Enhancement Summary

HTML Program Templates

The Extended Reporting Facility feature allows HTML output. We have
provided program templates to streamline the process of creating HTML. With
these templates, you can quickly and easily create reports that are
Internet/intranet-ready.

EZTOOL Date Routines

Three EZTOOL date routines (DATEVAL, DATECONV and VERNUMP) are
provided in the macro distribution library; during an SMP/E installation, they
will be populated to the target library.

Override Date Parameter

Easytrieve Plus lets you override the option parameter DATE.

Utility Macros

Easytrieve Plus provides two macros: CBLCNVRT, which converts COBOL file
and field definitions to the CA-Easytrieve Plus equivalent, and STRSRCH, which
provides a rapid string search that returns the position of the search pattern
within the target string, or returns a zero if the search pattern does not occur in
the target string.

6.4 Enhancements

Running above 16 MB

This program can run in 31-bit mode and allocate storage above 16 megabytes.
The Options Table parameter ALL31 designates where dynamic storage is
allocated and where the CA-Easytrieve application program resides (RMODE).
The majority of programs are loaded into memory above 16 MB.

Note: You must have ALL31=OFF if you are calling any 24-bit subprograms.

Important! The ALL31 option must be set to OFF for CMS.

Overview 1–17

Chapter

2 System Overview

You can better understand how CA-Easytrieve Plus works by examining the
modes in which it operates, the structure of a program, and the syntax rules of its
statements.

Five modes of operation facilitate production as well as ad hoc programming.
The modes of operation (determined by the PARM statement parameters you
choose) are:

■ Syntax check CA-Easytrieve Plus source statements.

■ Syntax check and compile source statements.

■ Syntax check, compile, and execute source statements (the default).

■ Syntax check and compile source statements and produce an object module.

■ Execute previously link-edited programs.

Structure of a Program
Each CA-Easytrieve Plus program contains an optional environment definition
section, an optional library definition section, and one or more activity sections.

Environment Definition Section

The environment definition section establishes parameters for the program. This
section permits you to override standard CA-Easytrieve Plus options and to
choose one of the modes of operation.

System Overview 2–1

Structure of a Program

Library Definition Section

The library definition section describes the data to be processed by the program.
It describes data files and their associated fields, as well as any working storage
requirements of the program.

Activity Definition Section

The activity definition section is the only mandatory section of your program.
There are two types of activities -- JOB and SORT. You can code any number of
JOB or SORT activities in any order.

■ JOB activities read information from files, examine and manipulate data,
write information to files, and initiate printed reports.

■ SORT activities create sequenced files.

You can code one or more procedures (PROCs) at the end of each activity.

You can code one or more REPORT subactivities after the PROCs at the end of
each JOB activity. You must code PROCs used within a REPORT subactivity
immediately after the REPORT subactivity in which you use them.

The general order of CA-Easytrieve Plus statements within a program is:

2–2 Reference Guide

Structure of a Program

The following code illustrates an example program showing the order of
statements.
ENVIRONMENT PARM ABEXIT SNAP DEBUG(PMAP DMAP FLOW)
 *
 FILE PERSNL FB(150 1800)
LIBRARY NAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
 DATE-OF-BIRTH 103 6 N

 TELEPHONE 117 10 N

 SEX 127 1 N
 MALES W 2 N
 FEMALES W 2 N
 *
 FILE SORTWRK FB(150 1800) VIRTUAL
 COPY PERSNL

 *
ACTIVITIES SORT PERSNL TO SORTWRK USING +
 (NAME-LAST NAME-FIRST) NAME MYSORT +
 BEFORE SCREENER
 *
 SCREENER. PROC
 IF SEX = 1, 2
 SELECT
 END-IF
 END-PROC
 *
 JOB INPUT SORTWRK NAME MYPROG +
 FINISH FINISH-PROCEDURE
 IF SEX = 1
 PRINT REPORT1
 PERFORM JOB-PROCEDURE
 END-IF
 IF SEX = 2
 PRINT REPORT2
 PERFORM JOB-PROCEDURE
 END-IF
 *
 JOB-PROCEDURE. PROC
 IF SEX = 1
 FEMALES = FEMALES + 1
 END-IF
 IF SEX = 2
 MALES = MALES + 1
 END-IF
 END-PROC
 *
 FINISH-PROCEDURE. PROC
 DISPLAY 'NUMBER OF FEMALES = ' FEMALES
 DISPLAY 'NUMBER OF MALES = ' MALES
 END-PROC
 *

System Overview 2–3

Structure of a Program

 REPORT REPORT1
 LINE NAME SEX DATE-OF-BIRTH TELEPHONE
 *
 ENDPAGE. PROC
 DISPLAY '*** END OF REPORT1 ***'
 END-PROC
 *
 REPORT REPORT2
 LINE NAME SEX DATE-OF-BIRTH TELEPHONE
 *
 ENDPAGE. PROC
 DISPLAY '*** END OF REPORT2 ***'
 END-PROC

2–4 Reference Guide

Structure of a Program

Program Flow

The following exhibit illustrates the general flow of a typical program.

You can code multiple JOBs, SORTs, and REPORTs within one program.

System Overview 2–5

Structure of a Program

The following diagram illustrates the flow of an activity within a typical
program.

2–6 Reference Guide

Syntax Rules

This program performs editing functions, creates a new file, and then passes that
file to the next activity. It also uses the transactions to update the master file.

Syntax Rules
The free-form English language structure of CA-Easytrieve Plus makes it easy
for you to develop an efficient, flexible programming style. To avoid
programming errors, follow its simple syntax rules.

Statement Area

All source statements are records of 80 characters each. The system installation
option SCANCOL (explained in the “Options Table” appendix) establishes a
statement area within the 80 available positions. The default statement area is in
columns 1 through 72.

For example, although positions 1 to 80 are available, 'SCANCOL=(7,72)'
establishes the statement area as positions 7 to 72. This enables optional data (for
example, sequence numbers and program identifiers) to be entered on the record
but ignored. The complete record is always printed on the statement listing.
 7 7 8
1....6 7......................................2 3......0

001000 PRGMNAME

ignored statement area ignored

System Overview 2–7

Syntax Rules

Character Sets

Both EBCDIC and DBCS data processing are applicable to China (Hanzi
characters), Japan (Kanji, Hiragana, and Katakana characters), and Korea (Haja
and Hangual characters). Both character sets are supported based on the
following assumptions and rules:

1. All the syntax rules described in this chapter apply to EBCDIC data only.
DBCS data in the statement area is not processed for continuation characters,
delimiters, words, identifiers, and so on.

2. A DBCS character occupies two bytes in storage. If not identified as DBCS
characters, these same two bytes would be processed as a pair of single byte
EBCDIC characters. To distinguish EBCDIC data from DBCS data, two shift
code systems are used. The first system, called the Wrapping shift code
system, takes the form of two codes -- one code preceding and the second
following the DBCS data. These codes wrap or enclose the DBCS data,
thereby identifying the beginning and end of DBCS data. The term
associated with the code that precedes the DBCS data is a Shift-Out code
(shift-out of EBCDIC). The code that delimits (separates) the DBCS data is
called a Shift-In code (shift-in to EBCDIC). These codes can be one or two
bytes in length.

 The second system of shift codes, called Header shift codes, uses a one- or
two-byte code to identify that the following byte is a binary number whose
value defines the amount of non-EBCDIC data that follows. Immediately
beyond that point, the processing of EBCDIC data can resume.

2–8 Reference Guide

Syntax Rules

 The following table illustrates the use of both shift code systems.

■ A shift code is a special one-or two-byte character contained in the statement

area. Shift code values are defined in the DBCS Options Module (see the
Getting Started for more details on the Options Module). Each shift code
value uniquely identifies the DBCS code system of the data. If the system
cannot be uniquely identified, a default is assumed. You can alter this
default at compile time with the PARM statement (for more information, see
PARM Statement in the “Environment Definition” chapter).

■ In the statement area, shift codes are required to distinguish DBCS data from
EBCDIC data. Once a CA-Easytrieve Plus word has been identified, the
word is known to be of EBCDIC, DBCS, or MIXED data format. Shift codes
are only maintained for MIXED words. The CA-Easytrieve Plus compiler
identifies the statement containing the word and when necessary, performs
the required processing to remove the shift codes and convert EBCDIC data.

System Overview 2–9

Syntax Rules

■ A word can only contain DBCS data belonging to one code system. Mixing
code systems within one word generates an error.

■ Only one shift code system can be defined for a DBCS code system.

■ Once a shift-out code is found in a word, the data that follows will not be
processed as DBCS data when:

– The end statement area is reached before the related shift-in code is
found.

– The shift-in code is found but it is not on a double byte boundary.

– The shift-out code is found as part of the identified DBCS data.

■ Once a Header shift code is found in a word, the data that follows is not
processed as DBCS data when:

– The end statement area is reached before the binary data count is
expired.

– The value of the data byte count is not a multiple of two.

Multiple Statements

The statement area normally contains a single statement. However, you can
enter multiple statements on a single record. The EBCDIC character string '. '
(period followed by a space) indicates the end of a statement. Another
CA-Easytrieve Plus statement begins at the next available position of the
statement area (after the space). For example, the following two statements are
on one record:
COST = FIXED + VARIABLE. PRICE = COST + PROFIT

Comments

When the first non-blank character of a statement is an '*' (asterisk), the
remainder of that record is a comment statement. You can use comment
statements at any place within a program, except within a continued statement
and not prior to or within instream macros. A statement containing all blanks is
treated as a comment.

A comment statement can contain both EBCDIC and DBCS data in the remainder
of the record. Any DBCS data must be identified by shift codes. The shift codes
must uniquely identify the code system of the DBCS data contained on the
comment statement.

2–10 Reference Guide

Syntax Rules

Continuations

The last non-blank character of a statement terminates the statement unless that
character is a - (hyphen) or a + (plus). The - indicates that the statement
continues at the start of the next statement area. The + indicates that the
statement continues with the first non-blank character in the next statement area.
The difference between - and + is important only when continuing words.
Continuation between words is the same for both. The following continued
statements produce identical results:
FIELD-NAME W 6 A +
 VALUE 'ABC-
DEF'

FIELD-NAME W 6 A -
 VALUE 'ABC+
 DEF'

To continue a statement defining DBCS data, you must delimit the DBCS data.
This means a shift-in code must precede the continuation character and a
shift-out code must precede the continuing DBCS data on the next record. The
following illustrates continuing a DBCS literal.
 FIELD-NAME W 10 K +
 VALUE '[DBDBDB]
 [DBDB]'

The [and] indicate shift-out and shift-in codes.

 FIELD-NAME W 10 K +
 VALUE '?6DBDBDB+
 ?4DBDB'

The ? indicates a Header shift code followed by
byte count.

System Overview 2–11

Syntax Rules

Words and Delimiters

One or more words make up each statement. A word can be a keyword, field
name, literal, or symbol. All words begin with a non-blank character. A delimiter
or the end of the statement area terminates these words. Delimiters make
statements readable but are not considered part of the attached word.
CA-Easytrieve Plus word delimiters are:

Symbol Term Description

 space Basic delimiter in each statement.

' apostrophe Encloses literals that are alphabetic.

. period Terminates a statement.

, comma Used optionally for readability.

() parentheses Encloses multiple parameters and portions of
arithmetic expressions (the left parenthesis acts as a
basic delimiter).

: colon Used as a delimiter for file, record, and field
qualifications.

At least one space must follow all delimiters except for the '(' (left parenthesis)
and ':' (colon). The word RECORD-COUNT is shown below with various
delimiters:
RECORD-COUNT
FILEONE:RECORD-COUNT
(RECORD-COUNT)
'RECORD-COUNT'
RECORD-COUNT,
RECORD-COUNT.

Keywords

Keywords are words that have specific meaning to CA-Easytrieve Plus. Some
keywords are reserved words. You can use non-reserved keywords in the
appropriate context as field names. For more information on keywords and
reserved words, see the “Keywords” appendix.

Multiple Parameters

You must enclose multiple parameters within parentheses to indicate group
relationships. The following example is a statement with multiple parameters:
CALL PGMNAME USING(FIELDA, FIELDB, FIELDC)

2–12 Reference Guide

Syntax Rules

Field Names

Field names are composed of a combination of not more than 40 characters
chosen from the following:

■ Alphabetic characters, A through Z, lowercase and uppercase

■ Decimal digits 0 through 9

■ All special characters, except delimiters.

The first character of a field name must be an alphabetic character or a decimal
digit. In addition, a field name must contain at least one alphabetic or special
character to distinguish the field name from a number.

All working storage field names and all field names within a single file must be
unique. If you use the same field name in more than one file, or in a file and in
working storage, you must qualify the field name with the filename or the word
WORK.

A qualified field name consists of the qualifying word followed by a colon and
the field name. You can use any number of spaces, or no spaces, to separate the
colon from either the qualifying word or the field name.

The field name RECORD-COUNT can be qualified in the following ways:
FILEA: RECORD-COUNT
FILEA:RECORD-COUNT
WORK : RECORD-COUNT

Labels

Labels identify specific JOBs, PROCedures, REPORTs, and statements. Labels
can be 40 characters long, can contain any character other than a delimiter, and
can begin with A-Z or 0-9; they cannot consist of all numeric characters.

EBCDIC Alphabetic Literals

Alphabetic literals are words enclosed in apostrophes, and can be 254 characters
long. They can only contain EBCDIC characters. Whenever an alphabetic literal
contains an embedded apostrophe, you must code two apostrophes. For
example, the literal O'KELLY is coded as:
'O''KELLY'

System Overview 2–13

Syntax Rules

Numeric Literals

Numeric literals can contain 18 numeric digits (EBCDIC characters 0 to 9). You
can indicate the algebraic sign of a numeric literal by attaching a + (plus) or a -
(minus) prefix to the numeral. Also, you can use a single decimal point to
indicate a maximum precision up to 18 decimal positions. The following
examples are valid numeric literals:
123
+123
-123.4321

EBCDIC Format Hexadecimal Literals

Hexadecimal literals are words used to code EBCDIC values that contain
characters not available on standard data entry keyboards. Prefix an EBCDIC
hexadecimal literal with X' (the letter X and an apostrophe), and terminate it
with an apostrophe. Each pair of digits that you code within the apostrophes is
compressed into one character. Only the EBCDIC digits 0 to 9 and the letters A to
F are enabled. The following hexadecimal literal defines two bytes of binary
zeros:
X'0000'

DBCS Format Literals

DBCS format literals contain DBCS characters only. Enclose a DBCS format
literal within apostrophes. A DBCS format literal can be 254 bytes long,
including the shift codes. Once the shift codes are removed, the maximum length
of a DBCS literal is 126 characters. DBCS format literals are processed without
the shift codes. Examples of DBCS literals follow:
'[DBDBDBDBDBDB]'
'?8DBDBDBDB'

The [and] indicate shift-out and shift-in codes.

The ? indicates a Header shift code followed by byte count.

2–14 Reference Guide

Syntax Rules

DBCS Format Hexadecimal Literals

DBCS format hexadecimal literals are words that you use to code DBCS values
that contain characters not available on standard data entry keyboards. Prefix a
DBCS hexadecimal literal with D' (the letter D and an apostrophe) and terminate
it with an apostrophe. Each group of four digits coded within the apostrophes is
compressed into one DBCS format character. The code system of the literal is the
current DBCS processing code system. For DBCS format hexadecimal literals,
Only the EBCDIC digits 0 to 9 and the EBCDIC letters A to F are allowed. You
cannot code shift codes as part of a DBCS format hexadecimal literal. The
following hexadecimal literal defines two Double Byte spaces in the IBM DBCS
coding standards:
D'40404040'

MIXED Format Literals

MIXED format literals are words containing both EBCDIC and DBCS characters.
Enclose MIXED format literals within apostrophes. The presence of shift codes
identifies DBCS subfields. Shift codes also identify the code system of that DBCS
data. The word coded within the apostrophes (including the shift codes) cannot
exceed 254 bytes in length. A MIXED literal is defined in the following example:
'EEEE[DBDBDB]'

The [and] indicate shift-out and shift-in codes.

Alphabetic Conversion Literals

Alphabetic conversion literals are words containing both EBCDIC and DBCS
characters. Enclose alphabetic conversion literals within apostrophes. The
presence of shift codes identifies DBCS subfields. Shift codes also identify the
code system of that DBCS data. The literal is converted into a DBCS literal. Any
EBCDIC format data is converted into the corresponding DBCS format data and
removes all shift codes.

Prefix an alphabetic conversion literal with E' (the letter E and an apostrophe)
and terminate it with an apostrophe. The word coded within the apostrophes
(including the shift codes) and the word built by the conversion process cannot
exceed 254 bytes (127 DBCS characters).

System Overview 2–15

Syntax Rules

The following example illustrates the definition of an alphabetic conversion
literal and the resultant DBCS literal:

Katakana Conversion Literals

Katakana conversion literals are words coded using both EBCDIC and DBCS
format characters. The presence of shift codes identifies DBCS subfields. Shift
codes also identify the code system of that DBCS data. The EBCDIC subfields are
interpreted as the EBCDIC representation of Katakana characters. Katakana
characters are represented in the EBCDIC system by those binary values
normally occupied by the English lower case character set. Each Kana character
coded in the conversion literal is converted into the corresponding DBCS format
character. If diacritical marks are present, each diacritical mark is merged with
the preceding EBCDIC character to give the DBCS format character that the
character and the mark form. Any other EBCDIC characters are converted into
their appropriate DBCS format value.

Prefix a Katakana conversion literal with K' (the letter K and an apostrophe) and
terminate it with an apostrophe. The word coded within the apostrophes
(including the shift codes) and the word built by the conversion process cannot
exceed 254 bytes (127 DBCS characters).

The following example illustrates the definition of an alphabetic conversion
literal and the resultant DBCS literal:

2–16 Reference Guide

Syntax Rules

Please note that the conversion technique described here for Katakana
conversion literals is used when EBCDIC format data is converted in EBCDIC
and MIXED format literals and fields into DBCS format data.

Hiragana Conversion Literals

Hiragana conversion literals are words coded using both EBCDIC and DBCS
format characters. The presence of shift codes identifies DBCS subfields. The
shift codes also identify the code system of that DBCS data. EBCDIC subfields
are interpreted as the EBCDIC representation of Katakana characters. In the
Japanese language, for each Katakana symbol there is an equivalent Hiragana
symbol. By indicating a word as a Hiragana conversion literal, each Katakana
EBCDIC character is interpreted as its equivalent Hiragana character and then
converts the character into the corresponding DBCS format character. Any
diacritical marks found in the literal are merged with the preceding Katakana
character. The applicable DBCS value for the merged characters are inserted into
the literal. Any other EBCDIC characters are converted into their appropriate
DBCS format value.

Prefix a Hiragana conversion literal with H' (the letter H and an apostrophe) and
terminate it with an apostrophe. The word coded within the apostrophes
(including the shift codes) and the word built by the conversion process cannot
exceed 254 bytes (127 DBCS characters).

The following example illustrates the definition of an alphabetic conversion
literal and the resultant DBCS literal:

User Converted Literals

User-converted literals are words specified in the source code as either EBCDIC,
MIXED, or DBCS literals that must be converted by a user-supplied routine into
an alphabetic EBCDIC, an alphabetic MIXED, or an alphabetic DBCS literal. For
a detailed description of coding a user conversion subprogram see the Getting
Started.

Prefix a user-converted literal with any alphabetic character (other than the
letters D, E, H, K, and X) and an apostrophe (for example, Q'). Terminate a user
converted literal with an apostrophe. You can obtain the alphabetic characters
that your installation supports, and their meaning in a CA-Easytrieve Plus
program, from your system administrator.

System Overview 2–17

Syntax Rules

The word coded within the apostrophes cannot exceed 254 EBCDIC characters.
No portion of the literal is converted – it is passeed unaltered to the user
supplied routine. The presence of shift codes identifies DBCS subfields. Shift
codes also identify the code system of that DBCS data. If the literal is an
alphabetic DBCS literal, the shift code characters are removed and only the
DBCS data is passed to the user routine. If the literal is an alphabetic MIXED
format literal, then the shift codes are maintained in the literal.

Format and Conversion Rules

During compile, all literals coded in the source program are converted into the
correct DBCS code system and data format (EBCDIC, MIXED, or DBCS) as
dictated by the statement upon which they appear. To understand the process
used to determine the correct code system and data format, it is important to
identify the element of each statement that is interpreted as the subject of that
statement. It is this subject that dictates the correct code system and format type.

Each statement has a subject element whose DBCS code system and Data Format
define the DBCS code system and data format of all the other elements that
appear on that statement. The following table details the subject element of those
statements that support the coding of literals. Those that do not have a subject
element are also included. They are indicated by the words “Not Applicable.”

Statement Subject Element

FILE filename filename

DEFINE fieldname fieldname

Assignment - fieldname = fieldname

IF fieldname fieldname

DO WHILE fieldname fieldname

RETRIEVE WHILE fieldname fieldname

MOVE Not Applicable

POINT filename filename

CALL program-name Not Applicable

DISPLAY filename(printer)

REPORT report-name filename(printer)

HEADING filename(printer)

TITLE filename(printer)

LINE filename(printer)

2–18 Reference Guide

Syntax Rules

Using the identified subject element of each statement, the following table
defines the rules for determining the DBCS Code System and Data Format for a
literal. If a literal is not in the required DBCS code system or data format, then at
compile time the literal is converted to the correct DBCS code system and data
format.

In the following table, the code ASIS means that the data format (EBCDIC,
MIXED, or DBCS) of the literal coded in the source is retained by the
CA-Easytrieve Plus compiler (it is not converted).

Statement-Keyword

Data Format of
Literal

DBCS Code System of
Literal

FILE - EXIT..USING ASIS PROCESSING

DEFINE - HEADING
 VALUE

ASIS
fieldname

PROCESSING
fieldname

IF/DO....WHILE fieldname fieldname

Assignment fieldname fieldname

MOVE ASIS PROCESSING

POINT ASIS filename

HEADING ASIS filename(printer)

TITLE ASIS filename(printer)

LINE ASIS filename(printer)

System Overview 2–19

Syntax Rules

Format Relationship Rules

EBCDIC, MIXED, and DBCS data formats are processed, but all the possible
relationships that can exist between these data formats are not supported. The
following table defines the relationships that are supported. The relationships
not defined in the table are not supported. Compilation errors occur if you
specify them in your program.

If a conversion is necessary, the conversion column in the table indicates the
additional processing that can apply to get the Object into the correct DBCS code
system and applicable data format. Conversion codes of A, K, H, and U indicate
the form of Conversion to be applied to any EBCDIC data found in the Object of
the CA-Easytrieve Plus statement. These codes mean A for Alphabetic
conversion; K Katakana conversion; H for Hiragana conversion; and U for a User
conversion routine. The letter F means that the object is reformatted to meet the
requirements of the subject element. This category includes the re-formatting of
Numeric data into the numeric format of the subject and also the re-formatting
from one data format (EBCDIC, MIXED, or DBCS) into the data format of the
subject element. The letter C specifies that a DBCS code conversion is performed
when the DBCS code system of the data identified in the object does not match
the DBCS code system of the subject element.
Subject Element Supported Object Conversion
 data format data format

A - EBCDIC Alpha EBCDIC Alphabetic field
 EBCDIC Zoned Numeric field F
 EBCDIC Packed field F
 EBCDIC Unsign Packed field F
 EBCDIC Binary field F
 EBCDIC Alphabetic Literal
 EBCDIC Hexadecimal Literal
N - Zoned Numeric EBCDIC Zoned Numeric field
 EBCDIC Packed field F
 EBCDIC Unsign Packed field F
 EBCDIC Binary field F
 EBCDIC Numeric Literal
P - Packed EBCDIC Zoned Numeric field F
 EBCDIC Packed field
 EBCDIC Unsign Packed field F
 EBCDIC Binary field F
 EBCDIC Numeric Literal F
U - Unsigned Packed EBCDIC Zoned Numeric field F
 EBCDIC Packed field F
 EBCDIC Unsign Packed field
 EBCDIC Binary field F
 EBCDIC Numeric Literal F
B - Binary EBCDIC Zoned Numeric field F
 EBCDIC Packed field F
 EBCDIC Unsign Packed field F
 EBCDIC Binary field
 EBCDIC Numeric Literal F

2–20 Reference Guide

Syntax Rules

M - MIXED EBCDIC Alphabetic field
 EBCDIC Zoned Numeric field F
 EBCDIC Packed field F
 EBCDIC Unsign Packed field F
 EBCDIC Binary field F
 MIXED field F C
 DBCS / Kanji field F C
 EBCDIC Alphabetic Literal
 EBCDIC Numeric Literal F
 EBCDIC Hexadecimal Literal
 DBCS Format Literal F C
 DBCS Hexadecimal Literal F C
 MIXED Format Literal C
 Alphabetic Conversion Lit. E F
 Katakana Conversion Lit. K F
 Hiragana Conversion Lit. H F
 User Converted Literals U F C
K - DBCS / Kanji EBCDIC Alphabetic field K
 EBCDIC Zoned Numeric field K F
 EBCDIC Packed field K F
 EBCDIC Unsign Packed field K F
 EBCDIC Binary field K F
 MIXED field K F C
 DBCS / Kanji field C
 EBCDIC Alphabetic Literal K F
 EBCDIC Numeric Literal K F
 EBCDIC Hexadecimal Literal K
 DBCS Format Literal C
 DBCS Hexadecimal Literal C
 MIXED Format Literal K F C
 Alphabetic Conversion Lit. E
 Katakana Conversion Lit. K
 Hiragana Conversion Lit. H
 User Converted Literals U F C

Identifiers

Identifiers are words that name things (field name, statement labels, and so
forth). Identifiers cannot contain these delimiters.
, comma
' apostrophe
(left parenthesis
) right parenthesis
: colon

Arithmetic Operators

CA-Easytrieve Plus arithmetic expressions (see the “Assignments and Moves”
chapter) use the following arithmetic operators:
* multiplication
/ division
+ addition
- subtraction

The arithmetic operator must lie between two spaces.

System Overview 2–21

Chapter

3 Environment Definition

This chapter discusses a method for customizing the operating environment for
the duration of a program's compilation and execution. The environment or
general systems standards for a program are determined by the parameters in
the system Options Table and the DBCS Options Module.

PARM Statement
The PARM statement and its parameters override selected general standards for
a program. Its alteration lasts for only as long as the program is running.

Environment Modification

The PARM statement and its parameters override selected general standards for
a program. Its alteration of the environment lasts for only as long as the program
is running.

Usage

Specification of the PARM statement is optional. Code the PARM statement only
to modify the environment for your program. If used, the PARM statement must
be the first statement in your CA-Easytrieve Plus job, except when instream
macros are used, then the PARM immediately follows the last MEND statement.
Environment <============== PARM
 ...
Library
 ...
Activities

PARM establishes program level parameters in the following areas:

■ SYNTAX, COMPILE, and LINK determine the mode of CA-Easytrieve Plus
execution.

■ ABEXIT, DEBUG, and LIST establish control over system facilities associated
with compiler output and execution error handling.

Environment Definition 3–1

PARM Statement

■ DEVICE establishes the specific device type to be used during file
processing.

■ PRESIZE, EXITSTR, and VFM establish system control parameters.

■ SORT controls the interface to your installation's sort program.

■ BIND, PLAN, PREPNAME, SQLID, SSID, PLANOPTS, SQLSYNTAX, and
USERID establish parameters for SQL execution.

■ DATE determines the format in which dates are displayed and stored.

PARM Statement Syntax

Code PARM statement parameters and their subparameters in any order. As
shown in the following syntax, you must code multiple subparameters within
parentheses. The complete syntax of the PARM statement is:
PARM +

[{ SNAP }]
[ABEXIT {NOSNAP}] +
[{ NO }]

[{DYNAMIC }]
[BIND {STATIC-ONLY}] +
[{ANY }]

[COMPILE] +

[{MMDDYY}]
[DATE {YYMMDD}] +
[{DDMMYY}]

[[{ IBM }][{ IBM }]]
[[{ IBMKOREA}][{ IBMKOREA}]]
[[{ JEF }][{ JEF }]]
[[{ JEF4040 }][{ JEF4040 }]]
[DBCSCODE [(SOURCE { JIPSE }][PROCESS { JIPSE }]]) +
[[{ JIS }][{ JIS }]]
[[{ KEIS }][{ KEIS }]]
[[{ KEIS4040}][{ KEIS4040}]]
[[{ MELCOM }][{ MELCOM }]]
[[{ SHOWA }][{ SHOWA }]]
[[{ TORAY }][{ TORAY }]]

[[] [] [] [] []
[DEBUG([CLIST] [PMAP] [DMAP] [FLDCHK] [FLOW] [FLOWSIZ literal-1] +
[[NOCLIST] [NOPMAP] [NODMAP] [NOFLDCHK] [NOFLOW]
[[] [] [] [] []

[] [{ }]]
[STATE] [XREF {LONG }]]
[NOSTATE] [NOXREF {SHORT}])] +
[] [{]]]

3–2 Reference Guide

PARM Statement

[{DISK}]
[{FBA }]
[{TAPE}]
[{3330}]
[DEVICE {3340}] +
[{3350}]
[{3375}]
[{3380}]
[{3390}]

[{ }]
[ENVIRONMENT{NONE }] +
[{COBOL}]

[EXITSTR literal-2] +

[]
[LINK (program-name-1 [R])] +
[]

[[] []]
[LIST ([FILE] [PARM])] +
[[NOFILE] [NOPARM]]
[[] []]

[PLAN (planname [command-program-name])] +

[PLANOPTS 'plan-options-module']

[PREPNAME (program-name-2 ['user-id1'])] +

[PRESIZE literal-3] +

[[]]
[[ALL]]
[RESTARTABLE (DLI [(literal-11)] [CURRENT] [USING (field-name...)])]
[[LAST]]
[[]]

[SORT (+

[{ }]
[ALTSEQ { NO }] +
[{(YES [program-name-3])}]

[DEVICE literal-4] +

[]
[DIAG] +
[NODIAG]
[]

[]
[ERASE] +
[NOERASE]
[]

[{ }]
[MEMORY { literal-5 }] +
[{(MAX [-literal-6]) }]

Environment Definition 3–3

PARM Statement

[{ALL [] }]
[{ [CONSOLE] }]
[{ [PRINTER] }]
[{ [] }]
[{ }]
[{ [] }]
[MSG ({CRITICAL [CONSOLE] })] +
[{ [PRINTER] }]
[{ [] }]
[{DEFAULT }]
[{NO }]

[RELEASE literal-7] +

[SYS (literal-8 ...)] +

[]
[TP] +
[NOTP]
[]

[]
[VIRTUAL] +
[REAL]
[]

[{ }]
[WORK { DA }])] +
[{ literal-9 }]

[SQLID 'owner'] +

[{FULL }]
[SQLSYNTAX {PARTIAL}] +
[{NONE }]

[SSID('ssid')] +

 [SYNTAX] +

 [USERID ('user-id2' ['password'])] +

[[{DISK }]]
[[{FBA }]]
[[{MEMORY}]]
[[{3330 }]]
[VFM ([literal-10] [DEVICE {3340 }])] +
[[{3350 }]]
[[{3375 }]]
[[{3380 }]]
[[{3390 }]]

3–4 Reference Guide

PARM Statement

PARM Statement Parameters
[{ SNAP }]
[ABEXIT {NOSNAP}]
[{ NO }]

ABEXIT indicates the level of control exercised over program interrupt codes 1
through 11. SNAP prints a formatted dump of CA-Easytrieve Plus storage areas
along with an error analysis report. NOSNAP prints only an error analysis
report. NO inhibits the interception of program interrupts.

[{DYNAMIC }]
[BIND {STATIC-ONLY}]
[{ANY }]

BIND is an SQL-related parameter that identifies the type of SQL bind that you
want for the execution of your application program. BIND is currently only used
by the DB2 SQL interface. It is ignored in other environments.

BIND DYNAMIC results in the dynamic execution of the SQL statements in your
program. Dynamic processing requires SQL statements to be dynamically
“prepared” before they can be executed. The SQL interface controls the SQL
environment and does not prepare SQL statements again unless a syncpoint has
been taken.

BIND STATIC-ONLY indicates that your application program is to execute
statically. This option requires the creation of a “static-command-program” that
is then processed by the DB2 for OS/390 and z/OS preprocessor. The DB2 for
OS/390 and z/OS preprocessor generates a DBRM and finally a PLAN. During
the execution of your application program, the SQL interface processes the SQL
statements in the “static-command-program.” If any errors are found in the
“static-command-program” or its PLAN, SQL processing terminates.

BIND ANY indicates that a “static-command-program” is to be generated and a
PLAN created, as with an option of STATIC-ONLY. However, if the SQL
interface encounters any errors with the “static-command-program” or its PLAN
during the execution of your application program, it switches to dynamic
processing.

BIND STATIC-ONLY or BIND ANY requires a value for the PLAN and LINK
parameters. PLAN specifies the name of the “static-command-program” and its
DB2 PLAN name. LINK identifies the load module name of your link-edited
CA-Easytrieve program. Your CA-Easytrieve application program must run as a
link-edited program for static SQL processing.

Environment Definition 3–5

PARM Statement

DYNAMIC is the default mode of execution if no value is specified for the BIND
parameter in the program or in the Options Table. Otherwise, the BIND value in
the Options Table becomes the default. The following table illustrates the use of
the BIND parameter with values specified in the Options Table.

BIND Parameter
Value Specified

Value Specified in the Options Table

 b A S D

No BIND
parameter specified

BIND defaults to
DYNAMIC

BIND defaults to
ANY

BIND defaults to
STATIC-ONLY

BIND defaults to
DYNAMIC

ANY ANY is the BIND
parameter

ANY is the BIND
parameter

Invalid - an error
occurs

Invalid - an error
occurs

STATIC-ONLY STATIC-ONLY is
the BIND
parameter

STATIC-ONLY is
the BIND
parameter

STATIC-ONLY is
the BIND
parameter

Invalid - an error
occurs

DYNAMIC DYNAMIC is the
BIND parameter

Invalid - an error
occurs

Invalid - an error
occurs

DYNAMIC is the
BIND parameter

[COMPILE]

COMPILE terminates execution after the completion of the syntax check and
compile operations.

[{MMDDYY}]
[DATE {YYMMDD}]
[{DDMMYY}]

DATE specifies the format of the date placed at the top of the compiler listing
and the date stored in the system-defined SYSDATE field. Valid values are
MMDDYY, YYMMDD, and DDMMYY where MM is the month, DD is the day,
and YY is the year.

[DBCSCODE]

DBCSCODE and its subparameters define the DBCS code system that is used as
the Source code system and the Processing code system. This option is invalid if
the DBCS option is not supported.

3–6 Reference Guide

PARM Statement

[SOURCE]

This option alters the DBCS code system identified by a set of shift codes when
the shift code values are not unique to one DBCS code system. For example, IBM
systems use a shift-out code of X'0E', but in some situations, the X'0E' code may
be used to identify JEF DBCS code. When words coded in CA-Easytrieve Plus
source are processed, the DBCS Options Module defines the actual code system
to be associated with the X'0E' shift-out code (for example, IBM). Therefore, if the
source contained JEF code identified by the X'0E' shift-out code, then this
subparameter of the PARM statement can be used to alter the system default.

Valid DBCS code systems that can be specified with the SOURCE keyword are
those code systems in the following list that have been defined in the DBCS
Options Module. For more information on the DBCS Options Module, see the
Getting Started.

■ IBM DBCS Code System for Japan

■ IBMKOREA DBCS Code System for Korea

■ JEF (FACOM) Code

■ JEF4040 (FACOM) Code

■ JIPSE (NEC) Code

■ JIS (Japanese Industrial Standards)

■ KEIS (HITACHI) Code

■ KEIS4040 (HITACHI) Code

■ MELCOM Code

■ SHOWA Information System (SIS) Code

■ TORAY Code.

[PROCESS]

This option alters the code system that is used for both DBCS and MIXED fields
in Working Storage and in those files where the DBCSCODE parameter was not
specified on the FILE statement. If you do not use this option, then the default
code system defined in the DBCS Options Module is used. For information on
the DBCS Options Module, see the Getting Started.

You should pay special attention to the use of this option when using multiple
DBCS code systems in your program. An unwise choice could result in a much
longer execution time than is necessary. By evaluating the best Processing code
system for the program, you can avoid unnecessary DBCS code conversions.

Environment Definition 3–7

PARM Statement

Valid DBCS code systems that you can specify with the PROCESS keyword are
those code systems in the following list that have been defined in the DBCS
Options Module. For more information on the DBCS Options Module, see the
Getting Started.

■ IBM DBCS Code System for Japan

■ IBMKOREA DBCS Code System for Korea

■ JEF (FACOM) Code

■ JEF4040 (FACOM) Code

■ JIPSE (NEC) Code

■ JIS (Japanese Industrial Standards)

■ KEIS (HITACHI) Code

■ KEIS4040 (HITACHI) Code

■ MELCOM Code

■ SHOWA Information System (SIS) Code

■ TORAY Code.

[DEBUG]

DEBUG and its subparameters control generation of certain system outputs.
These outputs are used to analyze programming errors that cause abnormal
execution termination. As shown in the syntax, subparameters prefixed with NO
inhibit the named operation.

 [CLIST]

CLIST creates a condensed listing of the executable program produced by the
compiler.

 [PMAP]

PMAP creates a complete listing of the executable program produced by the
compiler.

CLIST and PMAP are mutually exclusive subparameters.

 [DMAP]

DMAP creates a listing of the data map for each file and its associated fields.

 [FLDCHK]

FLDCHK validates all data references during program execution. A data
reference is invalid if a fieldname was referenced in a file that had no active
record. Invalid references (for example, data reference after end-of-file) might
otherwise cause a program interruption or incorrect program results.

3–8 Reference Guide

PARM Statement

 [FLOW]

FLOW activates a trace of the statements being executed. The statement numbers
are printed in the associated analysis report.

 [FLOWSIZ literal-1]

FLOWSIZ establishes the number of entries in the trace table for the flow option.
Literal-1 is a numeric value from 1 to 4096.

 [STATE]

STATE saves the statement number of the statement currently being executed.
The statement number is then printed in the associated abnormal termination
messages.

 [XREF]

XREF causes the creation of a cross reference listing of each field name, filename,
procedure name, segment name, report name, and statement label. LONG
implies that entries are listed even though they are not referenced. SHORT
causes only referenced entries to be listed.

[DEVICE]

DEVICE (VSE only) specifies the default device type for all files defined in the
library section. For programs executing on DOS AF2 or later, the specific disk
device type is determined when the file is opened. DISK indicates that the value
is to be taken from the DISK parameter of the Options Table.

[{ }]
[ENVIRONMENT {NONE }]
[{COBOL}]

ENVIRONMENT (OS/390 and z/OS only) specifies to establish the proper
execution environment prior to calling any COBOL subprograms. The
environment is established prior to each JOB activity that contains a CALL
statement and is terminated after the activity for which it was established. When
used on the PARM statement, it establishes the default (NONE or COBOL) for
the entire program. When this parameter is absent, the default for
ENVIRONMENT depends on how the ENVIRON system option was set at
installation. Using NONE overrides a system default of COBOL and COBOL
overrides a system default of NONE. See the “Subprograms” chapter for more
information about this parameter.

Note: ENVIRONMENT COBOL is not supported in SORT activities or in
REPORT procedures in sequenced reports.

Environment Definition 3–9

PARM Statement

[EXITSTR literal-2]

EXITSTR (VSE only) specifies the available storage at execution time for user
called programs and for non-VSAM I/O exits. Literal-2 must be a value from 0 to
4096. The literal-2 value represents 1024-byte units of storage.

[LINK (program-name-1 [R])]

LINK terminates execution after the completion of syntax check and compile
operations. Program-name-1 is used to create the link edit control statement that
names the new program. In OS/390 and z/OS systems, the optional
subparameter R specifies that the new program replaces an existing program
with the same name.

[LIST]

LIST controls the printing of certain system outputs. Subparameters prefixed
with NO inhibit the named operation.

 ([FILE])

FILE prints file statistics at the end of each JOB or SORT activity.

 ([PARM])

PARM prints system parameters at the conclusion of the syntax check operation.

[PLAN (planname [command-program-name])]

PLAN is an SQL parameter. Currently, it is used only by the DB2 for OS/390 and
z/OS SQL interface.

The PLAN parameter enables you to specify values for the
“static-command-program” and its DB2 PLAN. The name you specify for the
“static-command-program” must be a valid one- to eight-character load module
name. This name must be different from program-name-1 specified for the LINK
parameter.

The value specified for planname must be the one- to eight-character name of the
DB2 PLAN that identifies the DBRM of the given “static-command- program.”

Because the link-edit of the “static-command-program” and the bind of the DB2
PLAN are performed outside the control of CA-Easytrieve, you must specify the
correct names on the batch JCL to ensure successful execution of your program.
See the CA-Easytrieve SQL Interface Option Guide for information on how to
generate the “static-command-program.”

If not specified, command-program-name defaults to planname.

3–10 Reference Guide

PARM Statement

[PLANOPTS 'plan-options-module']

PLANOPTS is an SQL parameter. Currently, this parameter is only used by the
CA-Datacom/DB SQL interface.

Use PLANOPTS to specify the name of the plan Options Module that is to
override the default CA-Pan/SQL plan Options Module, DQSMPLN@. See the
CA-Pan/SQL SQL Interface Getting Started for more information about generating
a plan Options Module.

[PREPNAME (program-name-2 ['user-id1'])]

PREPNAME is an SQL parameter. Currently, it is used by the DB2 for VSE and
CA-Datacom/DB SQL interfaces.

For the DB2 for VSE SQL interface, the PREPNAME parameter enables you to
specify the name of the access module or “package” that is to be associated with
the SQL statements for this application program.

For the CA-Datacom/DB SQL interface, PREPNAME enables you to specify the
access plan.

For either database, the PREPNAME parameter also enables you to specify an
owner ID (‘userid-id1') for the access module or access plan. See your specific
database documentation for information about obtaining an authorization ID.

If PREPNAME is not specified, program-name-2 defaults to program-name-1 on
the LINK parameter. If the LINK parameter is not specified, program-name-2
defaults to the value specified in the Options Table.

Note: You should specify a unique value for program-name-2 for each program.
If you use the same name for either parameter value for all of your programs,
database catalog contention can occur, or an existing access module could be
replaced with another one. See your database administrator for information
about establishing naming conventions.

User-id1 must be an alphabetic literal with a maximum length of 30 characters.
The maximum length for program-name-2 is eight characters.

PREPNAME can be abbreviated as PREP.

[PRESIZE literal-3]

PRESIZE establishes the record length for the compiler's work file. Literal-3 must
be a numeric value from 512 to 32767. Code this parameter only to inhibit the
generation of error message B079 (see the “Diagnostics” appendix).

Environment Definition 3–11

PARM Statement

[RESTARTABLE...]

(OS/390 and z/OS only) RESTARTABLE is an IMS-only parameter for use with
the Extended Checkpoint/Restart Facility. For details see the CA-Easytrieve Plus
IMS/DLI Interface Option Guide.

[SORT]

SORT overrides the default parameters used to interface with your installation's
sort program. See the Getting Started for details of these SORT parameters.

 [{ }]
 [ALTSEQ { NO }]
 [{(YES [program-name-3])}]

ALTSEQ identifies the collating sequence table for the sort process. NO indicates
usage of the standard table. YES identifies an alternate table. Program-name-3
specifies the name of the table that you provide. When you omit
program-name-3, the default name is EZTPAQTT.

 [DEVICE literal-4]

DEVICE (OS/390 and z/OS only) establishes the device type for dynamically
allocated sort work data sets. Literal-4 can be any valid unit name or generic
device type.

 []
 [DIAG]
 [NODIAG]
 []

DIAG and NODIAG (VSE only) control printing messages containing diagnostic
information.

 []
 [ERASE]
 [NOERASE]
 []

ERASE and NOERASE (VSE only) control clearing sort work data sets at the end
of the sort.

[{ }]
[MEMORY{ literal-5 }]
[{(MAX [-literal-6]) }]

MEMORY specifies the maximum amount of core storage used by the sort
program. Literal-5 is the amount of storage made available for the sort and must
be a value from 16 to 4096. MAX enables the sort program to obtain maximum
storage available. Literal-6 is the amount of storage released (for system use)
after the MAX amount has been reserved. A minus sign must immediately
precede literal-6. Literal-5 and literal-6 values represent 1024-byte units of
storage.

3–12 Reference Guide

PARM Statement

[MSG]

MSG controls the content and routing of sort program messages.

{ALL }
{CRITICAL}
{DEFAULT }
{NO }

ALL, CRITICAL, DEFAULT, and NO establish the content of sort messages.
DEFAULT requests output at the level established when the sort program was
installed.

[]
[CONSOLE]
[PRINTER]
[]

PRINTER and CONSOLE specify the location that receives messages from the
sort program.

[RELEASE literal-7]

RELEASE determines the amount of core storage reserved from the sort
program. The value of literal-7 should be set large enough to supply all of the
core storage needs of any exits used as a part of the sort process. Literal-7 must
be a numeric value from 0 to 1024. The value represents 1024-byte units of
storage.

[SYS(literal-8)]

SYS (VSE only) specifies the logical unit assignment for sequential disk type sort
work data sets. You can code from one to eight values. Literal-8 must be a value
from 1 to 240.

[]
[TP]
[NOTP]
[]

TP and NOTP (VSE only) control the merge order of the sort to reduce
contention for I/O resources.

[]
[VIRTUAL]
[REAL]
[]

VIRTUAL and REAL (VSE only) control fixing storage pages. REAL allows
pages to be fixed.

[{ }]
[WORK { DA }]
[{ literal-9 }]

WORK specifies the type and number of work data sets used by the sort.

Environment Definition 3–13

PARM Statement

VSE DA indicates that one direct access type data set is used. Literal-9 specifies
the number of sequential disk type data sets used. Valid values for literal-9 are 1
to 8.

OS/390 and z/OS The value of literal-9 controls the allocation of work data sets.
When literal-9 is zero, you must supply DD statements for all work data sets
(none are dynamically allocated). A literal-9 value from 1 to 31 specifies the
number of work data sets dynamically allocated by the sort program.

[SQLID 'owner']

SQLID is an SQL parameter. Currently, this parameter is used only by the DB2
for OS/390 and z/OS SQL interface.

SQLID enables you to change the authorization ID of your SQL session. If you
specify a value for ‘owner', the DB2 SET CURRENT SQLID command is
executed by the DB2 SQL interface at compile time. For the SET CURRENT
SQLID command to execute successfully, you must have installed the
CA-Pan/SQL Interface for a DB2 release of 2.1 or greater. You must also have
the correct DB2 authorization to execute the SET CURRENT SQLID command.
See your DB2 documentation for more information about the SET CURRENT
SQLID command.

This parameter is in effect only for the compilation of your application program,
unless your program is coded using automatic processing. If your program is
coded using automatic processing, the SET CURRENT SQLID command is
executed again at the start of runtime. For native SQL processing, you must code
the SET CURRENT SQLID command in your program if you want to change the
value for the current authorization ID.

See the SQL Interface Option Guide for more information.

[{FULL }]
[SQLSYNTAX {PARTIAL}]
[{NONE }]

Use SQLSYNTAX to specify the level of SQL syntax checking that is to be
performed on the SQL statements coded in your program.

Specify FULL to indicate that detail level syntax checking should be performed.
An SQL PREPARE statement is executed by the CA-Pan/SQL interface for those
SQL statements that can be dynamically prepared. If you specify FULL, your
DBMS catalog must be available to CA-Easytrieve.

Specify PARTIAL to indicate that SQL statements in your program should be
syntax checked for valid commands and secondary keywords. No connection is
made to the DBMS catalog unless you have coded the SQL INCLUDE statement.
If you coded an SQL INCLUDE statement, your DBMS catalog must be available
to CA-Easytrieve. Your program cannot be executed until it has been fully syntax
checked, as described above.

3–14 Reference Guide

PARM Statement

Specify NONE with a BIND STATIC-ONLY parameter if you want syntax
checking to be performed by the DB2 preprocessor in a batch environment.
NONE causes partial syntax checking, as described above. If no compile errors
are found, your program executes, unless CA-Easytrieve errors are found. No
connection is made to the DBMS catalog unless you have coded the SQL
INCLUDE statement. If you coded an SQL INCLUDE statement, your DBMS
catalog must be available to CA-Easytrieve.

If you specify NONE for a non-DB2 environment, partial syntax checking is
performed, but the program is not executed until full syntax checking is
performed.

[SSID 'ssid']

SSID is an SQL parameter. Currently, SSID is used by the DB2 for OS/390 and
z/OS and VSE and ORACLE SQL interfaces. The maximum length for SSID is 30
characters.

For DB2 for OS/390 and z/OS: You can use SSID to specify the DB2 for OS/390
and z/OS subsystem ID, and/or a DB2 for OS/390 and z/OS location ID for
remote connections. If you specify a subsystem ID, it is used at both compile and
runtime. The DB2 for OS/390 and z/OS location ID is only used to establish a
connection at compile time. For a remote connection at execution time, code an
SQL CONNECT statement.

If you do not specify the DB2 for OS/390 and z/OS subsystem ID, the subsystem
ID from the Site Options Table is used.

Valid Formats
Description

xxxx DB2 for OS/390 and z/OS subsystem ID.

xxxx/yyyyyyyy DB2 for OS/390 and z/OS subsystem ID and a DB2
location ID.

/yyyyyyyy DB2 for OS/390 and z/OS location ID.

If no DB2 for OS/390 and z/OS subsystem ID is specified in the Options Table,
the SQL interface uses the ID from the DB2 for OS/390 and z/OS system default
module DSNHDECP. The value of the subsystem ID is obtained at compile and
runtime dynamically, therefore, there is no need to recompile your program to
change the ID. See your DB2 for OS/390 and z/OS systems programmer or
administrator for the default values defined for your DB2 for OS/390 and z/OS
system.

For DB2 for VSE: You can specify a database ID for an explicit connection.

Environment Definition 3–15

PARM Statement

For ORACLE: SSID can be used to specify a subsystem ID other than the local
subsystem.

If the SSID value is four characters or less, it is assumed to be an OS/390 or z/OS
subsystem ID. The subsystem ID is concatenated to the userid and password as
follows:
userid/password@M:subsysid

If the SSID value is greater than four characters, it is assumed to be a non-
OS/390 or z/OS ID, and, therefore a completely valued connection ID must be
provided which is concatenated to the userid/password values. No @ or driver
prefix is inserted by the interface. You must specify all special characters.

[SYNTAX]

SYNTAX terminates CA-Easytrieve Plus processing after the syntax check
operation.

[USERID ('user-id2' ['password'])]

USERID is an SQL parameter. Currently, USERID is used by the DB2 for VSE,
ORACLE, and CA-IDMS SQL interfaces. USERID is used by the SQL interface to
establish a connection to the database to compile the application program.

For DB2 for VSE and ORACLE, you can use 'user-ids' to specify a valid userid
and password for an explicit CONNECT.

For CA-IDMS, you can use ‘user-id2' to specify the CA-IDMS dictionary name
for an explicit CONNECT.

If you do not code USERID, an implicit connection occurs according to the rules
of the given database system.

‘User-id2' and ‘password' must be alphabetic literals, and each parameter has a
maximum length of 30 characters.

USERID can be abbreviated as USER.

[VFM]

VFM establishes the work area parameters used by the Virtual File Manager
access method.

 [literal-10]

Literal-10 specifies the amount of core storage made available for the buffer pool.
Valid numeric values for literal-10 are 6 to 4096. Literal-10 represents 1024-byte
units of storage.

3–16 Reference Guide

PARM Statement

 [DEVICE {MEMORY}]

DEVICE MEMORY inhibits the use of an overflow device.

 [DEVICE]

(VSE only) DEVICE defines the device type for VFM's overflow file. For
programs executing on DOS AF2 or later, the specific disk device type is
determined when the file is opened. DISK indicates that the value is to be taken
from the DISK parameter of the Options Table. MEMORY inhibits the use of an
overflow device. Other valid values are the device type codes of all supported
devices.

PARM Statement Examples

The following examples illustrate typical uses of the PARM statement:
PARM for production ...

 PARM LINK(MYPROG) DEBUG(PMAP, DMAP) +
 SORT (MSG (ALL, PRINTER))
 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE NAME DEPT

--

PARM for program testing ...

 PARM ABEXIT (SNAP) +
 DEBUG (PMAP, DMAP FLDCHK, FLOW, +
 FLOWSIZ (20), STATE) VFM (10)
 FILE PERSNL FB(150 1800)
 %PERSNL
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE NAME DEPT SALARY-CODE

Environment Definition 3–17

Chapter

4 Data Definition

This chapter describes the methods of defining data. Normally, you define data
fields in the section of your program called the library. The library defines the
data in terms of fields, records, and files. A typical file layout follows.

 Employee's Address Field
 |-----------/\----------|
 Employee Record { Jones, John J. 16822 Evergreen Chicago ...

P {
E { Hammond, Martha 422 Ash Ave. Evanston ..
R {
S { Gray, Frederick 16 Apple St. Lockport ..
O {
N { Freud, William G. 754 Lake St. Peotone ..
N {
E { __
L {
 { __
F {
I { __
L { .
E { .
 { .

Individual field data can also be defined later in JOB or SORT activities as the
need arises.

File Attributes

Use the FILE statement to describe a file or a database. This discussion of the
FILE statement includes the following information:

■ Syntax of the FILE statement

■ Filetypes processed

■ EXIT option

■ Optional parameters specifying the device type for SAM files

■ Record format of SAM, ISAM, and VSAM files for OS/390, z/OS, and VSE
programs

■ FILE statement examples.

Data Definition 4–1

FILE Statement

Field Data

Fields are defined in the library following the FILE statement, or later in the job
by using the DEFINE statement. Two categories of data can be defined:

1. File data

- fields defined within a record

2. Working storage data

– fields defined in working storage

This chapter's discussion of the DEFINE statement includes:

■ Syntax of the DEFINE statement

■ DEFINE statement examples

■ Rules applying to signed and unsigned fields

■ Edit MASK options.

COPY Statement

The COPY statement duplicates the field definitions of a named file to another
file to alleviate re-entering the same definition.

Data Reference

Rules for referencing data in an activity and for referencing system-defined
fields are discussed at the end of the chapter.

FILE Statement
FILE statements must describe all files and databases that your program
references. Code FILE statements at the beginning of the job after the PARM
statement, if one is used. Not all parameters are necessary (or valid) for
describing any one file. A review of all parameters quickly indicates those
required for any particular file.

4–2 Reference Guide

FILE Statement

Syntax

Code the optional parameters and subparameters of the FILE statement in any
order following the filename. As shown, you must code multiple subparameters
within parentheses. The complete syntax of the FILE statement is shown here:
FILE file-name +
 [SYSxxx] +

 [IS]
file [VIRTUAL [RETAIN]]
type []
 [{ }[]]
 [DLI ({ literal-1 []}[RESET])]
 [{ dbd-name [literal-2]}[]]
 []
 [IDMS (subschema-name [RESET])]
 [[CREATE [RESET]]]
 [VS ([ES] [F][PASSWORD 'literal-3'][UPDATE] [NOVERIFY])] +
 [SQL [(select-clause)]]
 []
 [HOSTDISK ({TO (field-name-1 field-name-2)} +]
 []
 [{ {field-name-3} [field-name-4] }]
 [{FROM ({'literal-4' }]'literal-5'])} +]
 [{ { } }]
 []
 [{ {field-name-5} [field-name-6] }]
 [{HOSTFILE ({'literal-6' } ['literal-7'])} +]
 [{ { } }]
 []
 [{ {field-name-7} }]
 [{FORMAT ({'literal-8' }) } [RESET]) +]
 [{ { } }]

 [[{ }]]
 [EXIT (program-name [NR][USING ({field-name-8} ...)][MODIFY])] +
 [[{literal-9 }]]

 [CARD]
 [PUNCH]
device [PRINTER]
type [DISK [literal-10]]
 [[]]
 [[[] [REWIND]]] +
 [TAPE [([NL [literal-11]] [UNLOAD])]]
 [[[] [NORWD]]]

 [F literal-12]
 [V literal-12]
 [U literal-13]
 []
record [{literal-13}]
format [FB (literal-12 {FULLTRK })] +
 [{ }]
 []
 [{literal-13}]
 [VB (literal-12 {FULLTRK })]
 [{ }]
 []
 [{literal-13}]
 [VBS(literal-12 {FULLTRK })]
 [{ }]

Data Definition 4–3

FILE Statement

 [WORKAREA literal-14] +

 [CISIZE literal-15] +

 [TABLE [INSTREAM]] +
 [[literal-16]]

 [BUFNO literal-17] +

 [DEFER] +

 [ASA] +

 [EXTENDED xrpt-printer] +

 [{IBM }]
 [{IBMKOREA}]
 [{JEF }]
 [{JEF4040 }]
 [DBCSCODE {JIPSE }]
 [{JIS }]
 [{KEIS }]
 [{KEIS4040}]
 [{MELCOM }]
 [{SHOWA }]
 [{TORAY }]

Parameters
filename

Filename is a one to eight-character name (one to seven in VSE) used to define
the file. All I/O statements that operate on the file refer to this name. Filename is
also used on the JCL statement to reference the file. For IMS/DLI files, the
filename is an arbitrary one to eight-character name. Every FILE statement must
have a filename immediately following the FILE keyword. Filenames must be
unique within your program. The first three characters of filename must be
different from the value of the work data set name prefix option (WKDSNPF),
discussed in the “Options Table” appendix.

[SYSxxx]

SYSxxx (VSE only) optionally establishes logical unit assignments. Valid entries
are SYSLST, SYSPCH, SYSIPT, and SYS000 through SYS240.

Note: The use of IGN on the ASSGN statement in the JCL is not supported.

4–4 Reference Guide

FILE Statement

File Type Parameters

All standard IBM filetypes are processed, including Sequential Access Method
(SAM), Index Sequential Access Method (ISAM), Virtual Storage Access Method
(VSAM), IMS/DLI, and the Virtual File Manager (VFM) of CA-Easytrieve Plus.
Also, other filetypes can be processed using user supplied exits. If you do not
specify a filetype, the file is assumed to be sequential. All filetypes are processed
as both input and output, with the single exception of ISAM files which are
processed as input-only files.

[IS]

IS designates an ISAM file. ISAM files are input-only files.

[VIRTUAL]

VIRTUAL identifies a file as a virtual (VFM) file. CA-Easytrieve Plus virtual files
are temporary sequential work files that are normally deleted after execution of
the activity in which they are read.

 [RETAIN]

RETAIN inhibits the automatic deletion of a VFM file after it is read. The file is
deleted after all activities have been processed.

[DLI]

DLI designates an IMS/DLI database. You must code a FILE statement for each
Program Control Block (PCB) that is used.

 {literal-1}

The relative position of the PCB in the PSB. Literal-1 must be a positive numeric
literal. This enables you to access the IOPCB by specifying a 1 for literal-1.

 {dbd-name}

Dbd-name names the Database Definition (DBD) in the Program Specification
Block (PSB) to be processed.

 [literal-2]

Literal-2 specifies the relative occurrence of like named DBD's within the PSB.
Literal-2 is required only when two or more DBDs have the same name. It is
valid only when it is coded with the dbd-name value.

 [RESET]

The RESET option causes all record areas to be set to binary zero prior to root
segment retrieval. (See the IMS/DLI Interface Option Guide.)

Data Definition 4–5

FILE Statement

[IDMS]

IDMS designates a CA-IDMS database. You must code a FILE statement for each
SUBSCHEMA that is used. Subschema-name names the database to be
processed.

 [RESET]

The RESET option causes all record areas to be set to binary zero prior to root
record retrieval.

[VS]

VS designates a VSAM file. Default parameters for VSAM file processing are Key
Sequenced Data Sets (KSDS) or Relative Record Data Sets (RRDS) with records of
undefined length.

 [ES]

Code ES to indicate an Entry Sequenced Data Set (ESDS).

 [F]

Code F if all records in the file are equal in length to the maximum length
defined for the file. This improves the efficiency of SORT activities.

 [PASSWORD 'literal-3']

'Literal-3' is the optional one- to eight-character password for the VSAM file. You
can specify the password as either an alphabetic literal or a hexadecimal quoted
literal. Enclose these literals in single quotes. No DBCS data can be contained in
literal-3.

 [CREATE]

Use the CREATE option to load a VSAM file.

 [RESET]

You can reload an existing file by coding the RESET option with CREATE.
RESET assumes that the file was defined by IDCAMS with the VSAM attribute
REUSE.

 [UPDATE]

Code the UPDATE option if you wish to update the file with the WRITE
statement.

4–6 Reference Guide

FILE Statement

 [NOVERIFY]

Code NOVERIFY to ignore the VSAM open error code of 116(X'74'). This error
occurs when the file is not properly closed by a previous job, or is being used by
another CPU.

Caution: Indiscriminate use of this option can cause loss of data records.

SQL [(select-clause)]

This parameter identifies the file as an SQL file. The only other options that can
be used with SQL are DEFER and DBCSCODE. For details on specifying this
option see the SQL Interface Option Guide.

[HOSTDISK]

This parameter identifies this file as a CA-Corporate Tie Host Disk file.
CA-Corporate Tie is a Computer Associates product that provides a transparent
link between the mainframe and Personal Computers (PCs). A Host Disk is a
CA-Corporate Tie file transfer facility. It transfers files between the mainframe
and the PC.

In CA-Easytrieve Plus, a HOSTDISK file is an output only file. When a
HOSTDISK record is written, the record is converted field by field from a
mainframe format to a PC format. The only other options that can be used with
HOSTDISK are DEFER and PRINTER. See the “File Processing” chapter for more
information about processing Host Disk files.

 {TO (field-name-1 field-name-2)}

The TO parameter fieldname-1 specifies a list of CA-Corporate Tie USER IDs or
GROUP IDs who receive the file exported to the Host Disk. The TO parameter
fieldname-2 specifies a check list that indicates which of the receiving IDs are
known to CA-Corporate Tie. Both parameters are required.

Fieldname-1 must specify an eight-byte alphanumeric field that can occur a
maximum of 50 times. To specify a single user, define a fieldname-1 as an
eight-byte alphanumeric, but without an OCCURS clause.

Fieldname-2 must specify a one-byte alphanumeric field that must occur exactly
the same number of times as fieldname-1. When fieldname-1 does not specify an
OCCURS clause, you can not specify an OCCURS clause for fieldname-2.

Data Definition 4–7

FILE Statement

 { {field-name-3} [field-name-4] }
 {FROM ({'literal-4' } ['literal-5'])}
 { { } }

This parameter supplies the CA-Corporate Tie userid of the sender and,
optionally, the userid's password. The password is not required if you are using
the CA-Corporate Tie External Security Interface. It is used by CA-Corporate Tie
to determine your authority to access the system and files on the Host Disk.
Fieldname-3 and fieldname-4 must be alphanumeric fields eight or fewer bytes
in length. Literal-4 and literal-5 must be alphanumeric literals eight or fewer
bytes in length.

 { {field-name-5} [field-name-6] }
 {HOSTFILE ({'literal-6' } ['literal-7'])}
 { { } }

The HOSTFILE parameter names a Host Disk file and, optionally, its Host Disk
set. Fieldname-5 must be an alphanumeric field, 12 or fewer bytes in length.
Literal-6 must be an alphanumeric literal, 12 or fewer bytes in length. The
12-byte maximum consists of a filename eight or fewer bytes in length, a period,
and an extension of three bytes or less in length. The naming convention for the
filename must conform to the requirements of the specified PC format.

Fieldname-6 must be an alphanumeric field eight or fewer bytes in length.
Literal-7 must be an alphanumeric literal eight or fewer bytes in length.

 { {field-name-7} }
 {FORMAT ({'literal-8' }) }
 { { } }

The FORMAT parameter specifies the exact PC format of the file. The file is
converted to the PC format specified by the FORMAT parameter. Defined
formats are LOTUS, DBASEIII, PRN, EZTPC, and BASIC. PRN is the only
allowed format when the PRINTER keyword is specified. Fieldname-7 must be
an alphanumeric field eight or fewer bytes in length. Literal-8 must be an
alphanumeric literal eight or fewer bytes in length.

 [RESET])

The RESET parameter sets the CA-Corporate Tie Overwrite File Flag to YES. This
flag is used to indicate if you want to purge existing files of the same name. If
RESET is not coded, the Overwrite File Flag is set to NO, and an additional file is
created on the Host Disk.

4–8 Reference Guide

FILE Statement

[EXIT]

The EXIT option invokes a user-written program for each CA-Easytrieve Plus
input and/or output operation for the file. EXIT is not valid for VFM or
IMS/DLI. For ISAM and VSAM files, you must include the MODIFY option. You
must also specify the WORKAREA option if the exit performs input or output
services; you need not specify WORKAREA if you are using the MODIFY
function for other than ISAM or VSAM files. (See the “Subprograms” chapter for
more information.)

 program-name [NR]

Program-name specifies the name of the user program. In VSE, the parameter
NR following the program-name indicates that the program is not relocatable.

 [{ }]
 [USING ({field-name-8})]
 [{literal-9 }]

The USING option appends the associated parameters (fieldname-8 or literal-9)
to the standard parameter list passed to the exit program. Field names must be
working storage or system defined fields and must be defined in the library
section. If fieldname-8 contains DBCS data, that data belongs to the DBCS code
system defined as the Processing code. The field's format remains unchanged.
There is a limit of 62 fields that can be passed to the exit program.

 [MODIFY]

The MODIFY option specifies that input or output services are provided, but the
exit can inspect and modify each record after input and before output.

Device Type Parameters

The optional parameters CARD, PUNCH, PRINTER, DISK, and TAPE specify
the device type for SAM files. For all VSE files, code one of these parameters (or
enable the default from PARM or the Options Table). For OS/390 and z/OS, if
you do not specify one of these parameters, the device type is determined by
your JCL. TAPE and DISK are meaningless to OS/390 and z/OS. Tape
positioning in OS/390 and z/OS is determined by the termination disposition
subparameter of the DISP parameter coded on the DD statement in the JCL.
These parameters are:

■ PASS, which forwards space to the end of the data set on the tape

■ DELETE, which rewinds the current tape, and

■ KEEP, CATLG, UNCATLG, all of which position the tape to reprocess the
data set.

Data Definition 4–9

FILE Statement

[CARD]

The CARD option retrieves the file data from the input stream (that is, by using
SYSIN or SYSIPT). For syntax check, compile, and execute jobs, the data must
follow an END delimiter. Only one file in an execution can use the CARD option.
Files using this option must be 80-character unblocked records.

[PUNCH]

The PUNCH option indicates punched card output. Files created with this
option are 80-character unblocked records in OS/390 and z/OS or 81-character
unblocked records in VSE.

[PRINTER]

The PRINTER option indicates print output files. Although input/output
statements (GET, PUT, READ, WRITE) cannot reference these printer files, the
DISPLAY statement and REPORT statements can reference them. Unless
otherwise coded, record length and blocksize default to one more than the
LINESIZ entry in the Options Table. The additional character contains the ASA
control character.

No fields can be defined for a PRINTER file. When coded for a file that specifies
the HOSTDISK keyword, PRINTER must be specified before HOSTDISK and
PRN is the only valid value for the HOSTDISK subparameter FORMAT.

[DISK [literal-10]]

This parameter is maintained for compatibility with prior releases, but is no
longer used.

[TAPE]

(VSE only) The TAPE option indicates that the file is on magnetic tape.

 [NL [literal-11]]

Use the NL parameter to specify nonlabeled tapes. Literal-11 specifies the
number of tapes on which the file resides. The default is standard tape labels.
The literal-11 default is one reel.

 [REWIND]

Rewind the tape before each use.

 [UNLOAD]

Rewind and unload the tape after use.

 [NORWD]

Do not rewind either before or after tape use.

4–10 Reference Guide

FILE Statement

The default for tape rewinding and unloading is obtained from the Options
Table.

Record Format Parameters

You can optionally code the record format of SAM and ISAM files for OS/390
and z/OS programs, but you must code it for VSE programs. If you do not code
record format in OS/390 and z/OS, it is gotten from the operating system when
the file is opened.

[]
[F, V, U,]
[FB, VB]
[]

Fixed (F), variable (V), and undefined (U) formats are supported. Fixed and
variable length records can be blocked (FB,VB).

[VBS]

(OS/390 and z/OS only) OS/390 and z/OS systems can process Variable
Blocked Spanned (VBS) records using BFTEK=A processing. Spanned is valid
only for variable blocked records.

 literal-12

Literal-12 specifies the maximum record length.

 {literal-13}

Literal-13 specifies the file's maximum block length.

For variable format files, permit four bytes of the record length for the Record
Description Word (RDW) and, if the file is blocked, four bytes of the block size
for the Block Description Word (BDW).

{FULLTRK}

A block length designation of FULLTRK establishes an output block size that
equals either the maximum track capacity of the direct access device or the next
lower multiple of the record size for FB files. FULLTRK should not be used with
tape output or FBA disk devices.

Note: To obtain an OS/390 (or z/OS) /DFP system determined block size within
CA-Easytrieve Plus you can do one of the following:

■ Include the DSORG, LRECL and RECFM parameters in the original JCL or
TSO dynamic allocation. This forces SMS to establish the block size before
CA-Easytrieve Plus gets control in OPEN processing. This is only applicable
for disk data sets.

Data Definition 4–11

FILE Statement

OR

■ Define a value of zero for the block length value (literal-13). If you want the
logical record length to be picked up from your JCL, code a zero for
literal-12. You must also code a BLKSIZE=0 in your JCL or code no BLKSIZE
parameter at all. For TAPE data sets, a zero blocksize must be coded on the
FILE statement.

 Examples:
 FILE file-name FB(0 0)

 This specifies to pick up the LRECL from the JCL and to utilize the block size
set by System Management Storage (SMS).

 FILE file-name FB(150 0)

 This specifies to pick up the LRECL from this definition and to utilize the
block size set by SMS.

 FILE file-name FB(150 3000)

 This specifies to pick up this definition and ignore both the JCL and the SMS
determined block size.

 Note: If you code a zero block size within CA-Easytrieve Plus and/or in
your JCL, and your data set is not SMS managed, your program abends with
a 013 open problem.

[WORKAREA literal-14]

The WORKAREA option establishes the number of bytes to be allocated as a
work area for the file. WORKAREA cannot be coded if CARD, DLI, or IDMS
parameters are specified. Literal-14 specifies the number of bytes to be allocated
and must be large enough to contain the longest record processed. This forces
“move mode” instead of the default “locate mode.”

[CISIZE literal-15]

(VSE only) The CISIZE option sets literal-15 as the control interval size for
sequential output on FBA devices.

[TABLE]

The TABLE option declares the file as the source for a SEARCH statement to
access a table.

4–12 Reference Guide

FILE Statement

 []
 [INSTREAM]
 [literal-16]
 []

The INSTREAM option indicates that the table file immediately follows the file
description. The size of an INSTREAM table is limited only by the amount of
available memory. Literal-16 specifies the maximum number of entries in an
external table. If INSTREAM or literal-16 is not specified, the file is an external
table whose maximum number of entries is limited by the Options Table
parameter TBLMAX. See the “Table and Array Processing” chapter for more
information about table processing.

[BUFNO literal-17]

BUFNO establishes the number of buffers allocated for the file. Literal-17 can be
1 or 2 for VSE programs and 1 through 255 for OS/390 and z/OS programs. The
default value is obtained from the Options Table.

[DEFER]

Coding the DEFER option specifies to delay the opening of the file until the first
input or output operation for the file occurs. The default opens all referenced
files at the beginning of each CA-Easytrieve Plus activity.

[ASA]

(OS/390 and z/OS only) This optional parameter sets the DCB A option for
RECFM.

[EXTENDED xprt-printer]

The EXTENDED option indicates that the file is to be associated with an
extended reporting printer. This means that input/output statements (GET, PUT,
READ, WRITE) cannot reference these printer files. However, the DISPLAY
statement and REPORT statements can reference these printer files. Unless you
code them, record length and blocksize default to those defined for the printer in
the extended reporting Options Module.

The xrpt-printer entry identifies the extended reporting printer whose
characteristics are to be associated with this file. You must define the xrpt-name
in the extended reporting Options Module. See the Extended Reporting Facility
Guide for more information about extended reporting.

Data Definition 4–13

FILE Statement

[DBSCODE]

DBCSCODE defines the CA-Easytrieve Plus code system that is associated with
all fields defined for this file. If you do not code this option, the Processing code
system is used. The DBCS Options Module identifies this code system. You can
alter the code system through using the DBCSCODE option of the PARM
statement. If your installation does not support the DBCS option, then this option
is invalid.

If the file being defined is associated with an extended reporting printer that
does not support DBCS data, then this keyword is invalid. Should the extended
reporting printer support DBCS data, then you can use the DBCSCODE keyword
to modify the DBCS code system of the printer.

Examples

The following examples illustrate FILE statements for various files. See the “File
Processing” chapter for more information about processing files.

The first two examples below define the same file in OS/390, z/OS, and VSE. In
VSE, you must specify the data set attributes.

Define a sequential (SAM) file in OS/390 and z/OS:

FILE SEQFILE

Define a SAM file in VSE:

FILE SEQFILE FB(80 1600) DISK(3340)

Define an entry-sequenced, fixed-length VSAM file to be loaded:

FILE ENTSEQ VS(ES, F, CREATE (RESET))

Define a VSAM file for exit processing:

FILE XITFILE, +
 VS, +
 EXIT(XITNAME, +
 USING(XITFILE:RECORD-LENGTH, +
 'LIT1', +
 PARM2) +
 MODIFY) +
 WORKAREA(400)

Define a virtual file and RETAIN it for the duration of the CA-Easytrieve Plus
job processing:

FILE VRTFILE V(200) +
 VIRTUAL RETAIN

4–14 Reference Guide

DEFINE Statement

DEFINE Statement

DEFINE within an Activity

The DEFINE statement specifies data fields within a record or within working
storage. You usually specify file fields and work fields in your library section,
but you can also define them within an activity as the following examples
illustrate:

 FILE PERSNL FB(150 1800)
 DEFINE EMP# 9 5 N
Environment DEFINE NAME 17 20 A
Library DEFINE EMP-COUNT W 4 N
... *
 JOB INPUT PERSNL NAME MYPROG
 EMP-COUNT = EMP-COUNT + 1
Activities PRINT REPORT1
... *
 REPORT REPORT1
 LINE EMP# NAME EMP-COUNT

Environment FILE PERSNL FB(150 1800)
Library SALARY-CODE 134 2 N
... *
 JOB INPUT PERSNL NAME MYPROG
 DEFINE EMP# 9 5 N
Activities DEFINE NAME 17 20 A
... PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMP# NAME SALARY-CODE

When fields are defined within an activity, each field definition must start with
the DEFINE keyword and physically be defined before the field is referenced. In
the library, the use of the DEFINE keyword is optional.

File Fields

File fields are normally defined immediately following the associated FILE
statement in the library section of the program. Their rules of usage are:

1. An unlimited number of fields are accepted for each file.

2. Field names must be unique within a file.

3. You can define file fields anywhere in a library section, or anywhere in a
CA-Easytrieve Plus activity except within a REPORT procedure.

Data Definition 4–15

DEFINE Statement

Working Storage Fields

Working storage fields are normally defined in the library section. Their rules of
usage are:

1. An unlimited number of working storage fields are accepted.

2. Working storage fields must be uniquely named within working storage.

3. You can define working storage fields anywhere in a library section, activity,
or REPORT procedure.

Basic Field Definition

The basic field definition consists of the DEFINE keyword, the field name, its
location, and its attributes. The sample definition below uses the field name
FIELDA, has a location starting in position 100 in the record, and has the
attribute 5 for length and A for alphabetic.

 Field-name Location Attributes

DEFINE FIELDA 100 5 A

The complete syntax of the DEFINE statement follows.

4–16 Reference Guide

DEFINE Statement

DEFINE Syntax

Code the DEFINE statement in the library section of the program directly after
the FILE statement or anywhere else in the activity. You must code the first three
parameters (fieldname-1, location, attributes) in the order shown in the following
example. As indicated, code multiple subparameters within parentheses. The
complete syntax of the DEFINE statement is:

 DEFINE [file-name-1:]field-name-1 +

 {integer-1 }
 {* [+integer-2] }
Location {W } +
 {S }
 {[file-name-2:]field-name-2 [+integer-3]}

 {A}
 {K}
 {M}
Attributes integer-4 {N} [integer-5] [EVEN] +
 {P}
 {B}
 {U}

 [file-name-3:]field-name-3

 [VARYING] +

 [HEADING ([#integer-6] 'literal-1' ...)] +

 [INDEX (field-name-4 ...)] +

 { }
 [{[letter] [BWZ] [KANJI] ['literal-2'] }] +
 [MASK ({ HEX })]
 [{ }]
 { }

 [OCCURS integer-7] +

 [VALUE literal-3] +

 [RESET]

Data Definition 4–17

DEFINE Statement

Parameters
DEFINE

You can omit the DEFINE keyword for fields defined immediately after the
associated FILE statement or for working storage fields defined after any FILE
statement. For definitions outside the library, the DEFINE keyword must
precede each field definition and you must specify filename-1 to identify the
appropriate file/record or working storage.

 [file-name-1:]field-name-1

Fieldname-1 is the name of the field you are defining. It can be from 1 to 40
alphanumeric characters in length, can contain any character other than a
delimiter, and must begin with A-Z or 0-9; it cannot consist of all numeric
characters. Filename-1 identifies the appropriate file/record or working storage
for fieldname-1.

Location

You must establish the location of the field's left-most (starting) position in one
of the following ways:

 {integer-1}

Integer-1 specifies the starting position relative to position 1 of the record.

 {* [+integer-2]}

The * (asterisk) indicates that the field begins in the next available starting
position (highest location defined so far, plus 1). The optional +integer-2 is an
offset you want to add to the * value. There must be at least one blank between
the * and the optional +integer-2.

 {W or S}

Coding a W or S establishes a working storage field. W fields are spooled to
report (work) files; S fields are not spooled. For an example, see the Report
Procedures section in the “Report Processing” chapter.

 {[file-name-2:]field-name-2 [+integer-3]}

Specify fieldname-2 if you want an overlay redefinition. Specify the optional
filename-2 if the redefined field is in a file or record other than the file or record
currently being defined. The optional +integer-3 permits you to offset the field
from the beginning of fieldname-2. If you use overlay redefinition, make sure
that fieldname-1 fits in the storage boundaries of fieldname-2. Any indexes
associated with fieldname-2 also apply to fieldname-1.

If both filename-1 and filename-2 are specified, they must identify the same file.

4–18 Reference Guide

DEFINE Statement

Attributes

For each fieldname-1 you define, you must also specify the following attributes:

■ Field length in bytes

■ Data format

■ Number (if any) of decimal positions.

 {integer-4}

Integer-4 specifies the length (in bytes) of the defined field.

Data Format

Specify data format by selecting one of the following codes:

■ {A} — alphanumeric—use when none of the numeric data types apply to the
associated field.

■ {K}—DBCS alphanumeric — use when the data in the associated field is
known to be in DBCS format. The field's length must be a multiple of two.
The data in this field is associated with the DBCS code system defined as the
DBCS Processing code unless the field belongs to a file that has the
DBCSCODE option coded on its FILE statement.

■ {M}—MIXED alphanumeric — use when the data in the associated field is
known to be either EBCDIC, DBCS, or a mixture of both. The field is
processed as though it contains EBCDIC data. The DBCS data in this field
must be identified by the shift codes of the field's DBCS code system. The
field's DBCS code system is assumed to be the DBCS Processing code system
unless the field belongs to a file that has the DBCSCODE option coded on its
FILE statement. This field type is invalid for those DBCS code systems that
do not have an assigned shift code system and therefore cannot support a
MIXED field type.

■ {N}—zoned decimal — the field contains digits 0 through 9 in external
decimal form (that is, 0 = X'F0').

■ {P}—packed decimal — the field contains numbers that meet IBM's
definition of internal packed decimal. For instance, the two-byte packed field
containing 123 looks like X'123F'.

■ {B}—binary — the fields contain binary data. In a quantitative binary field (a
field with zero (0) or more decimal places specified), the high order bit is the
sign bit. In a non-quantitative binary field (a field with no decimal place
specification), the high order bit is a binary digit.

For example, in a one-byte quantitative field the following is true:
(HEX) 7F = (BIN) 0111 1111 = (DECIMAL) 127
(HEX) 80 = (BIN) 1000 0000 = (DECIMAL) 128-

Data Definition 4–19

DEFINE Statement

For a one-byte non-quantitative binary field the following is true:
(HEX) 7F = (BIN) 0111 1111 = (DECIMAL) 127
(HEX) 80 = (BIN) 1000 0000 = (DECIMAL) 128

The following tables show the length equivalent and maximum possible values
for both signed and unsigned binary fields:

Signed Binary Fields (Quantitative)

field maximum maximum
length positive negative
in bytes digits value value
________ ______ _____________ ______________

 1 3 127 128-
 2 5 32,767 32,768-
 3 7 8,388,607 8,388,608-
 4 10 2,147,483,647 2,147,483,648-

Unsigned Binary Fields (Non-Quantitative)

field maximum
length unsigned
in bytes digits value

 1 3 255
 2 5 65,535
 3 8 16,777,215
 4 10 2,147,483,648

■ {U}—unsigned packed decimal — used to reference part of a packed decimal
field. For instance, the two-byte unsigned packed field containing 123 looks
like X'0123'.

The maximum length and allowable decimal places for each field type are:

 Data Maximum Number of
 Format Length Decimal
 Code (bytes) Positions
 ______ _______ _________

 A 32,767* not valid
 K 32,766* not valid
 M 32,767* not valid
 N 18 0 - 18
 P 10 0 - 18
 B 4 0 - 10
 U 9 0 - 18

* For table file fields, ARG (argument) and DESC (description), the maximum
length is 254. For more information on table files see the “Table and Array
Processing” chapter.

4–20 Reference Guide

DEFINE Statement

 {[integer-5]}

Integer-5 is an option that specifies the desired number of decimal positions for
fieldname-1. Integer-5 cannot be specified for data format 'A'. If integer-5 is
specified, the field is considered to be quantitative.

 [EVEN]

Use EVEN to indicate that a packed decimal field (P) is to contain an even
number of digits. The high order digit is zero. For example, a two-byte packed
even field can only contain two digits, such as X‘012F'.

Note: EVEN is valid only for P fields.

[filename-3:]field-name-3

When you use the optional fieldname-3, the field length, data format, and
number of decimal positions that you specified for fieldname-3 are duplicated
for fieldname-1. If fieldname-3 is in a different file or record, specify the name of
that file or record.

[VARYING]

The VARYING option indicates that fieldname-1 is a varying length field. This
means that the length of this field, for each occurrence in separate records, is
unique. Varying length fields are alphanumeric and consist of a two-byte length
value followed by the data.

You can specify VARYING on A, K, and M fields. When VARYING is specified,
the length attribute (integer-4) is the total number of bytes the varying length
field can occupy (that is, two-byte length plus maximum size of data).

You can specify VARYING for file fields or working storage fields. For file fields
the starting position (integer-1) points to the two-byte length indicator. For both
file fields and working storage fields, overlay redefinition begins with the
two-byte length indicator.

When referencing a VARYING field in your job, the field name (fieldname-1) can
be used alone or suffixed as shown below.

Assume fieldname-1 is FLDA, then:

■ FLDA references the entire field (both length and data) as a variable length
field.

■ FLDA:LENGTH references only the length (first two bytes) as a two-byte
binary field.

■ FLDA:DATA references the data portion of the field (from byte three on) as
an alphanumeric field.

Data Definition 4–21

DEFINE Statement

When a VARYING field is displayed in your output, the data window is based
on the maximum length of the field (integer-4 minus two). The length indicator
does not display in output unless DISPLAY HEX is specified.

Length restrictions for varying length fields are as follows:
field minimum maximum
type length length
_____ _______ _______

 A 3 32769
 K 4 32768
 M 4 32769

The default value for a varying field is a string of zero (0) length. However, if the
VALUE option is coded, its value and length become the default for the field.

See examples of varying length fields under “DEFINE Statement Examples” later
in this chapter.

[HEADING ([#integer-6] 'literal-1' ...)]

The HEADING option specifies an alternate report heading for fieldname-1 (the
default is the actual fieldname).

Integer-6 defines the font number of the font to be used to format 'literal-1' when
you use fieldname-1 in a report directed to an extended reporting printer. Any
'literal-1' that does not have a font assigned uses the default font identified in the
extended reporting Options Module. If the report is directed to a normal printer,
this value is ignored. See the Extended Reporting Facility Guide for more
information about extended reporting.

'Literal-1' specifies the alternate heading and can be up to 40 characters long.
'Literal-1' must be enclosed in parentheses. Multiple literal-1's enclosed in the
parentheses are stacked vertically over the field when printed. For detailed
examples, see the Report Definition Statements section in the “Report
Processing” chapter and the example in the Alternate Report Headings section.

[INDEX (field-name-4 ...)]

The INDEX option establishes indexes for fieldname-1. Fieldname-4 provides the
name for the index. You can specify multiple indexes by coding a list of index
names enclosed in parentheses.

A four-byte field is automatically allocated for each index. Any references you
make to a field with the INDEX option cause that field's location to be adjusted
by the index amount. See the “Table and Array Processing” chapter for more
information about indexing.

[MASK]

The MASK option establishes a pattern (print edit mask) for fieldname-1.

4–22 Reference Guide

DEFINE Statement

 [letter]

Any letter from A through Y can be used as an optional mask identifier. You can
use the letter to identify a new MASK or to retrieve a MASK that was previously
defined either in the Options Table or by a MASK parameter on a previous field
definition. If the new MASK that you identify does not already exist, the mask is
retained for future reference. If you subsequently reference fieldname-1 for
printing, the associated letter identifier is automatically used to determine the
print MASK. Do not use the same identifier to establish more than one mask.
You can define 192 unidentified Edit Masks and 25 identified Edit Masks, for a
total of 217 Edit Masks.

 [BWZ]

The BWZ (blank when zero) option suppresses the printing of fieldname-1 when
it contains all zeros. BWZ can be used by itself or with other options on the
MASK parameter.

 [KANJI]

The KANJI option converts the value in fieldname-1 into its equivalent DBCS
format. The conversion is performed after the Edit Mask or pattern has been
applied to the numeric value in fieldname-1 but before fieldname-1 is printed. If
the fieldname-1 is zero and you have coded the BWZ option, the output displays
DBCS spaces.

 ['literal-2']

'Literal-2' defines an edit mask and must be enclosed within apostrophes. The
actual print edit mask is coded according to the rules specified later in this
chapter under the subject heading Edit Masks. System default masks for numeric
fields are:

Number of
 Decimals Mask

 none ZZZZZZZZZZZZZZZZZZ *
 0 ZZZ,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ-
 1 ZZ,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.9-
 2 Z,ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.99-
 3 ZZZ,ZZZ,ZZZ,ZZZ,ZZZ.999-
 4 ZZ,ZZZ,ZZZ,ZZZ,ZZZ.9999-
 5 Z,ZZZ,ZZZ,ZZZ,ZZZ.99999-
 6 ZZZ,ZZZ,ZZZ,ZZZ.999999-
 7 ZZ,ZZZ,ZZZ,ZZZ.9999999-
 8 Z,ZZZ,ZZZ,ZZZ.99999999-
 9 ZZZ,ZZZ,ZZZ.999999999-
 10 ZZ,ZZZ,ZZZ.9999999999-
 11 Z,ZZZ,ZZZ.99999999999-
 12 ZZZ,ZZZ.999999999999-
 13 ZZ,ZZZ.9999999999999-
 14 Z,ZZZ.99999999999999-
 15 ZZZ.999999999999999-
 16 ZZ.9999999999999999-
 17 Z.99999999999999999-
 18 .999999999999999999-

* For zoned decimal fields with no decimals, the default mask
 is '999999999999999999'.

Data Definition 4–23

DEFINE Statement Examples

Default Edit Masks are defined in the Options Table when CA-Easytrieve Plus is
installed.

 {HEX}

HEX is a special edit mask that instructs specifies to print the contents of
fieldname-1 in double-digit hexadecimal format. You can print fields of up to 50
bytes in length with the HEX mask, as the following example illustrates:
SOCIAL-SECURITY-NUMBER 4 5 P MASK HEX

Please note that HEX edit masks are not allowed for VARYING fields.

[OCCURS integer-7]

The OCCURS option establishes an array for fieldname-1. Integer-7 specifies the
number of elements in the array (the number of occurrences of fieldname-1). You
can reference the elements of this array by manipulating the INDEX for
fieldname-1, if defined or a subscript. The maximum value for integer-7 is 32767.
For more information about arrays, see the “Table and Array Processing”
chapter.

[VALUE literal-3]

The VALUE option initializes the contents of a field in working storage. Literal-3
can be any valid literal whose type matches the fieldname-1 type. If literal-3 is
non-numeric, it must be enclosed in apostrophes. You cannot use the VALUE
option on an overlay redefinition, unless the original definition is an
alphanumeric field. The maximum length for literal-3 is 254 bytes.

[RESET]

The RESET option is used only for W working storage fields. When coded on the
field definition for a W field, RESET returns the field to its initial value whenever
JOB or SORT is executed. RESET can be used with the OCCURS option for array
fields but cannot be used for redefined fields (fields having overlay redefinition).
When RESET is specified on a field in conjunction with the OCCURS option, the
length of the resulting array cannot be greater than 65,520 bytes. Multiple fields
specified with RESET options are reset in the order of the field definitions. The
only exception to RESET is when W working fields are referenced in report
processing. RESET is not performed during the printing of spooled reports.

DEFINE Statement Examples
The examples below illustrate two ways of describing a record from a personnel
file. The first method uses an '*' to define the starting location of the fields. The
second method uses absolute starting positions. In this case, both methods result
in the same description.

4–24 Reference Guide

DEFINE Statement Examples

Note: The DEFINE keyword is not needed when the field definitions
immediately follow the FILE statement.

Record Layouts

 ----------------REGION
 |---------------BRANCH
 || -------------SSN
 || | --------EMP#
 || | |
 0000000001111 ... 78 (column number)
 1234567890123 90

 Method 1

 FILE PERSNL FB(150 1800)
 REGION * 1 N
 BRANCH * 2 N
 SSN * 5 P
 EMP# * 5 N
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMP# REGION BRANCH

 Method 2

 FILE PERSNL FB(150 1800)
 REGION 1 1 N
 BRANCH 2 2 N
 SSN 4 5 P
 EMP# 9 5 N
 JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1
 LINE EMP# REGION BRANCH

Overlay Redefinition

Overlay redefinition is yet another method of describing the personnel record, as
the next example illustrates. NAME-LAST and NAME-FIRST overlay and
redefine NAME.

FILE PERSNL FB(150 1800)
NAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE NAME-FIRST NAME-LAST

When redefining a varying length field, redefinition begins with the length
indicator (first two bytes) of the varying length field.

Data Definition 4–25

DEFINE Statement Examples

Working Storage Initialization

Numeric work fields are initialized to zeros and alphabetic work fields to blanks.
To initialize these fields to other values, use the VALUE option, as the following
example shows:
DEFINE CURRENT-MONTH W 10 A VALUE 'JANUARY'

Varying Length Fields

The VARYING parameter on the DEFINE statement designates varying length
fields. An example of a varying length field definition is shown below.
FLDA W 250 A VARYING

Because VARYING is used, this W type work field has two parts that are
internally defined as follows:
W 2 B 0 for the two-byte field length
W 248 A for the data

When this field is referenced in your job statements, you can designate the entire
field, including the length, by specifying FLDA. Or, you can specify only the
length portion or only the data portion of the field. For the W field defined
above:
FLDA:LENGTH references the binary portion only
 (bytes one and two)

FLDA:DATA references the alphanumeric portion only
 (bytes 3 through 250)

FLDA references the entire field
 (bytes 1 through 250)

4–26 Reference Guide

DEFINE Statement Examples

Displaying Varying Length Fields

The display window for varying length fields is based on maximum length. In
the above example, this is 250 bytes.

Normally, the length portion of the field is not displayed. However, when
DISPLAY HEX is used, the length and the data are displayed. DISPLAY HEX
displays the length and the full data field in hexadecimal and character format.
The following example illustrates this:

Statements:
 DEFINE FLDA W 7 A VALUE 'ABCD' VARYING
 JOB INPUT NULL
 DISPLAY FLDA
 DISPLAY HEX FLDA
 STOP

Produce:
 ABCD
 CHAR ABCD
 ZONE 00CCCC4
 NUMB 0412340

Data Definition 4–27

DEFINE Statement Examples

Assigning and Moving Varying Length Fields

Assignments are based on the current length of the data and the rules of
assignment. MOVEs default to the current length of the data. MOVE SPACES,
MOVE LOW-VALUES, and MOVE HIGH-VALUES move blanks, X’FFs, and
X’00s, respectively, according to the maximum possible length of the varying
length field. The following shows some examples:

Statements:

DEFINE SENDNULL W 10 A VARYING VALUE ''
DEFINE SENDVAR W 10 A VARYING VALUE '12345678'
DEFINE RECVVAR07 W 7 A VARYING
DEFINE RECVVAR10 W 10 A VARYING
JOB INPUT NULL
RECVVAR10 = SENDNULL . * ASSIGN NULL TO A VARYING
DISPLAY '1. VALUE=' RECVVAR10 +1 'LENGTH=' RECVVAR10:LENGTH
RECVVAR10 = SENDVAR . * ASSIGN 10 BYTE VARYING TO 10 BYTE VARYING
DISPLAY '2. VALUE=' RECVVAR10 +1 'LENGTH=' RECVVAR10:LENGTH
RECVVAR07 = SENDVAR . * ASSIGN 10 BYTE VARYING TO 7 BYTE VARYING
DISPLAY '3. VALUE=' RECVVAR07 +1 'LENGTH=' RECVVAR07:LENGTH
RECVVAR10 = RECVVAR07 . * ASSIGN 7 BYTE VARYING TO 10 BYTE VARYING
DISPLAY '4. VALUE=' RECVVAR10 +1 'LENGTH=' RECVVAR10:LENGTH
MOVE SPACES TO RECVVAR07 . * MOVE SPACES TO 7 BYTE VARYING
MOVE HIGH-VALUES TO RECVVAR07. * MOVE X'FF'S TO 7 BYTE VARYING
MOVE LOW-VALUES TO RECVVAR07 . * MOVE X'00'S TO 7 BYTE VARYING
DISPLAY '5. VALUE=' RECVVAR07 +1 'LENGTH=' RECVVAR07:LENGTH
MOVE SENDVAR TO RECVVAR07 . * MOVE 10 BYTE VARYING TO 7 BYTE VARYING
RECVVAR07:LENGTH = 2 . * THEN OVERRIDE LENGTH TO 2
DISPLAY '6. VALUE=' RECVVAR07 +1 'LENGTH=' RECVVAR07:LENGTH
STOP

Produce:

1. VALUE= LENGTH=
2. VALUE=12345678 LENGTH= 8
3. VALUE=12345 LENGTH= 5
4. VALUE=12345 LENGTH= 5
5. VALUE= LENGTH= 5
6. VALUE=12 LENGTH= 2

Note: If the sending field has a length of zero and the receiving field is a
VARYING field, the receiving field will have a length of zero. If the sending field
has a length of zero and the receiving field is not a VARYING field, the receiving
field is filled with the fill character (blank for assigned, blank or specified fill
character for MOVE).

4–28 Reference Guide

DEFINE Statement Examples

Alternate Report Headings

The default report heading for a field is the field name. Sometimes a field name
can be cryptic or mismatched when compared to the width of the actual data. In
these cases, you can use the HEADING option, as the following example
illustrates:

FILE PERSNL FB(150 1800)
 EMP# 9 5 N HEADING('EMPLOYEE' 'NUMBER')
 PAY-NET 90 4 P 2 HEADING('NET' 'PAY')
 PAY-GROSS 94 4 P 2 HEADING('GROSS' 'PAY')
 WORK-FIELD W 4 P 2 HEADING('AMOUNT' 'OF' 'TAXES')
JOB INPUT PERSNL NAME MYPROG
 WORK-FIELD = PAY-GROSS - PAY-NET
 PRINT REPORT1
*
REPORT REPORT1
LINE EMP# PAY-GROSS PAY-NET WORK-FIELD

Signed/Unsigned Rules

Signed

If you specify a numeric field with decimal positions (0 to 18), it is considered to
be a signed (quantitative) field. The following rules apply to signed fields:

1. For binary numbers, the high-order (left-most) bit is taken as the sign,
regardless of field length. In any manipulation, CA-Easytrieve Plus shifts the
field and propagates the high-order bit. For example, a one-byte binary field
containing a hexadecimal FF has the numeric value -1.

2. For non-negative, zoned decimal numbers on the left side of an Assignment
statement, an F sign is set. Otherwise, it manipulates the number in packed
decimal format.

3. Packed decimal numbers are manipulated in packed decimal format.

4. By definition, there is no sign in unsigned packed decimal numbers (U
format). When you manipulate these numbers, an F sign is supplied.

Unsigned

If you specify a numeric field with no decimal positions, that field is considered
to be unsigned (non-quantitative) and the following rules apply:

1. For binary numbers, the magnitude of the number must fit within 31 bits or
less. The NUMERIC test is not true for a four-byte binary field with the
high-order bit on. The high-order bit contributes to the magnitude of
numbers in fields of one-byte to three-byte lengths. For example, a one-byte
binary field containing a hexadecimal FF has a numeric value of 255.

Data Definition 4–29

DEFINE Statement Examples

2. Both zoned decimal and packed decimal fields follow the same rules. All
zoned decimal fields are packed and handled as packed decimal fields. The
actual storage value in the field is used, but it is your responsibility to
maintain a positive sign. An F sign is placed in any unsigned field on the left
side of an Assignment statement.

3. An unsigned packed decimal field (U format) is always unsigned. When you
manipulate the field, an F sign is supplied.

Edit Masks

Field data is edited only at the time of printing and according to a specified edit
mask pattern. The MASK option of the DEFINE statement specifies the edit mask
pattern. Each edit mask pattern is created by using combinations of the following
characters:

■ 9 — causes a digit to print.

■ Z — causes a digit to print (except for leading zeros).

■ * — causes an asterisk to replace leading zero digits.

■ - — causes a minus sign to print prior to the first non-zero digit of a negative
number.

■ $ — causes a currency symbol to print prior to the first non-zero digit (the
currency symbol is determined by the MONEY option from the Options
Table described in the “Options Table” appendix).

■ x — any character can be printed with the edited data when the digits are
represented by 9s.

Editing Rules

Although the examples that follow illustrate edit masks and their use, it is
important to understand the rules of editing that follow:

1. Each digit of the field must be designated in the mask by 9, Z, *, -, or $.

2. There is no implied relationship between the edit mask and the number of
decimal digit attributes of the field.

3. Alphanumeric fields cannot be edited. (The exception is MASK HEX.)

Leading Zeros

There are a number of methods for dealing with leading zeros by printing,
suppressing, or replacing them.

4–30 Reference Guide

DEFINE Statement Examples

Printing

When leading zeros are an important part of the number (for example, social
security numbers, and part numbers), an edit mask that prints these zeros is
essential. Here are several examples of edit masks that print leading zeros.

 Mask Field Contents Printed Results

999-99-9999 053707163 053-70-7163
(99)-9999 006421 (00)-6421

Suppressing

In some instances, leading zeros add unnecessary information and can confuse
the reader. In these cases, use an edit mask that suppresses leading zeros.

Mask Field Contents Printed Results

$$,$$9 01234 $1,234
$$,$$9 00008 $8
$$,$$9.99 0123456 $1,234.56
ZZZ,ZZ9 000123 123
---,--9 +001234 1,234
---,--9 -001234 -1,234

Note: All special characters are suppressed until a digit is printed before the
special character. For example, if your field contains 0.11 and uses a Z.ZZ mask,
11 is displayed without the leading decimal point.

Replacing

In cases where fields need to be protected (for example, check amounts), you can
use edit masks that replace leading zeros with other characters.

 Mask Field Contents Printed Results

**9 001 **1
,9 01234 *1,234
,9.99 0123456 *1,234.56

Data Definition 4–31

COPY Statement

Negative Numbers

The characters used as negative number indicators are printed to the right of the
last digit of the negative data that you edit. You can use any characters as
negative number indicators, although the most typical indicators are the minus
sign (-) and the credit indicator (CR). If the number is positive, the printing of
these characters is inhibited.

Mask Field Contents Printed Results

ZZZ- -123 123-
ZZZ- +123 123
ZZZ CR -123 123 CR
ZZZ CR +123 123
ZZZ IS MINUS -123 123 IS MINUS

COPY Statement
The COPY statement duplicates the field definitions of a named file or record. Its
syntax is:

Syntax
 {file-name }
COPY { }
 {[database-file-name:]record-name }

You can code an unlimited number of COPY statements for any one file.
Filename or record-name is the name of a previously defined file or record
whose fields you want to duplicate. The fields are duplicated as if they were
coded at the place CA-Easytrieve Plus where the COPY statement is
encountered.

The same rules of field definition apply when using the COPY statement (for
example, field names must be unique in a given file or record).

Example

FILE PERSNL FB(150 1800)
 NAME 17 20 A HEADING ('EMPLOYEE NAME')
 NAME-LAST NAME 8 A HEADING ('FIRST' 'NAME')
 NAME-FIRST NAME +8 12 A HEADING ('LAST' 'NAME')
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (NAME-LAST NAME-FIRST) NAME MYSORT
JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE NAME-FIRST NAME-LAST

4–32 Reference Guide

COPY Statement

COPY Rules for Database Files

The following rules apply to the COPY statement when used with database files.

If you code:
FILE file-name-1 DLI
 field-name ...
 RECORD ...
 field-name...
FILE file-name-2 DLI
 COPY file-name-1

the entire DLI file structure, including the PCB fields, are copied from filename-1
to filename-2.

If you code:
FILE file-name-1 DLI
 field-name ...
 RECORD ...
 field-name ...
 RECORD ...
 field-name ...
FILE file-name-2 (sequential file)
 COPY file-name-1

the DLI fields (no PCB fields are copied) are copied and adjusted to reflect their
locations as they are in the concatenated DLI record. (Because the record
structure is not copied to a sequential file, the field names must be unique. If this
is not the case, a duplicate name error occurs.)

COPY RECORD-NAME copies the fields from only the specified RECORD.

Examples

FILE DBASE IDMS(DEMOSS03)
RECORD CUSTOMER 104 KEY(CUST-NO)
 CUST-NO 1 10 A
 CUST-NAME 11 20 A
RECORD SALES 28
 SLS-CUST-NO 1 10 A
FILE DDBASE FB(28 280)
COPY SALES (fields from RECORD SALES copied)
JOB INPUT (DBASE) NAME MYPROG
 RETRIEVE DBASE +
 SELECT (CUSTOMER AREA 'CUSTOMER-REGION' +
 SALES ID 'SA' SET 'CUSTOMER-SALES')
 IF PATH-ID EQ 'SA'
 MOVE LIKE SALES TO DDBASE
 PUT DDBASE
 ELSE
 GO TO JOB
 END-IF

Data Definition 4–33

Data Reference

FILE DLIFILE DLI (DI21PART 1)
RECORD PARTROOT 50 KEY(PARTKEY 1 17)
PARTKEY 1 17 A
PART-NUMBER 1 17 A
PART-DESC 27 24 A
FILE SEQFILE FB (50 500)
COPY DLIFILE (record description from FILE DLIFILE copied)
JOB INPUT (DLIFILE) NAME MYPROG
 RETRIEVE DLIFILE +
 SELECT (PARTROOT WHILE (PART-DESC ALPHABETIC))
 MOVE LIKE DLIFILE TO SEQFILE
 PUT SEQFILE

You can specify record-name(filename) or filename:record-name on the COPY
statement.

Note: You cannot copy a database file to a Host Disk file.

Data Reference
Every data reference in your program must be unique. You can provide this
uniqueness in one of two ways:

■ Unique name

■ Qualification.

Unique Name

A name is unique if no other file or work field has that name. For example,
GROSS-PAY is unique if it appears as fieldname-1 in only one DEFINE
statement (and is never copied to another file).

Qualification

Qualification occurs when you prefix the optional qualifier filename: to a
fieldname. The use of the qualifier is required whenever the fieldname alone
cannot uniquely identify the data reference. The qualifier for file fields is the
associated filename and/or record name. For working storage fields, the
qualifier is the keyword WORK. Fields from non-synchronized, automatic input
files do not require the optional filename: qualifier.

4–34 Reference Guide

Indexing

Indexing
Indexing is data reference that results when a displacement value is derived to
correspond to a particular occurrence in a field name defined with the OCCURS
option. The formula for deriving the index value is: the number of the desired
occurrence minus one, multiplied by the length of the occurring field element.
For example, if an occurring field is defined as:
DEFINE MONTHWORD MONTH-TABLE 9 A +
 OCCURS 12 INDEX MONTH-INDEX

MONTH-INDEX for the third occurrence is derived as follows:
MONTH-INDEX = (3 - 1) * 9
MONTH-INDEX = 18

Subscripts are an alternate method available where CA-Easytrieve Plus performs
the index computation.

System-Defined Fields
Three categories of system defined fields are provided:

■ General

■ File related

■ Report related

General Fields

SYSDATE is an eight-byte alphabetic field that contains the system date at the
start of execution. The DATE option of the “Options Table” appendix,
determines the format of the date. A slash (/) separates the month, day, and year
components of the date, such as MM/DD/YY.

SYSDATE-LONG is a 10-byte alphabetic field that contains the system date,
including the century, at the start of execution. The DATE option of the “Options
Table” appendix, determines the format of the date. A slash (/) separates the
month, day, and year components of the date, such as MM/DD/CCYY.

SYSTIME is an eight-byte alphabetic field that contains the system time at the
start of execution. A period (.) separates the data into hours, minutes, and
seconds, such as HH.MM.SS.

Data Definition 4–35

System-Defined Fields

PARM-REGISTER is a four-byte binary field that contains the contents of register
1 upon entry to CA-Easytrieve Plus. Register 1 contains the address of a passed
parameter list. This address is accessed by the subprogram EZTPX01 when
passing EXEC statement PARM parameters.

RETURN-CODE is a four-byte binary field whose contents are returned to the
operating system in register 15 when CA-Easytrieve Plus terminates.
RETURN-CODE is initialized to zero, but you can set it to any value.

KANJI-DATE is an 18-byte field that contains the system date at the start of
execution. The DATE option of the Options Module determines the format of the
date. The DBCS Options Module defines the KANJI characters that are merged
with the year, month, and day components of the date. The DBCS code system of
the date is the default Processing DBCS code system as established in the DBCS
Options Module. For more information, see the Getting Started.

KANJI-TIME is a 16-byte Kanji field that contains the system time at the start of
execution. This field is the same as the CA-Easytrieve Plus system defined field
called SYSTIME, except that the SYSTIME EBCDIC value has been converted
into DBCS. The DBCS code system of the date is the default Processing DBCS
code system as established in the DBCS Options Module. For more information,
see the Getting Started.

File Fields

The file related fields RECORD-LENGTH, RECORD-COUNT, and FILE-STATUS
are described in the “File Processing” chapter under the System-Defined File
Fields section. PATH-ID is described in the IDMS/IDD Interface Option Manual
and the IMS/DLI Interface Option Manual. CHKP-STATUS and CHKP-ID are
described in the IMS/DLI Interface Option Manual.

Report Fields

The report related fields LEVEL and TALLY are described in the “Report
Processing” chapter in the CONTROL Reports section.

LINE-COUNT is a field that contains the number of lines printed on the page.

PAGE-COUNT is a field that contains the number of pages printed.

4–36 Reference Guide

Chapter

5 Processing Activities

This chapter discusses CA-Easytrieve Plus processing activities. These activities
resemble the steps of a JOB, but they are not constrained by JCL and associated
operating system overhead. Activities are executed one at a time, in
top-to-bottom order.

The two processing activities are JOB and SORT. You can code JOB and SORT
activities as often as necessary within any CA-Easytrieve Plus program.

JOB Activities

JOB activities examine and manipulate data, write information to files, and
initiate printed reports.

SORT Activities

SORT activities create a sequenced file that contains all or part of the records
from another file.

JOB Statement
The JOB statement defines and initiates processing activities. Within these
activities, statements can specify various processing tasks:

■ Retrieval of input files

■ Examination and manipulation of data

■ Initiation of printed reports

■ Production of output files.

Processing Activities 5–1

JOB Statement

The JOB statement also identifies the name of the automatic input file (which can
be any file or database that can be processed sequentially). The following
example illustrates the position of JOB activities within a CA-Easytrieve Plus
program:

Environment
...
Library
... {JOB ...
... {...
JOB <-----------{ job procedures
and/or {...
SORT {
 { reports
Activities {...
 ...

Syntax

Code the parameters of the JOB statement in any order. As shown, code multiple
subparameters within parentheses. The syntax is:
JOB +

[{ }]
[INPUT {[(file-name [KEY (field-name-1...)]...)}] +
[{ NULL }]
[{ SQL }]

[START proc-name-1] +

[FINISH proc-name-2] +

[NAME job-name] +

[{ }]
[ENVIRONMENT {NONE }] +
[{COBOL}]

[CHECKPOINT (literal [USING (field-name-2...)])] +

[RESTART proc-name-3]

Parameters
[INPUT]

The optional INPUT parameter identifies the automatic input to the activity.

When you do not specify INPUT, an input file is automatically provided. If a
SORT activity immediately precedes the current JOB activity, the default input is
the output file from that SORT activity. Otherwise, the default input is the first
filenamed in the library section.

5–2 Reference Guide

JOB Statement

 {(file-name)}

Filename identifies the automatic input files. Filename identifies any file defined
in the library section of the program eligible for sequential input processing.

 {NULL}

Code NULL as the filename to inhibit automatic input. Use this when no input is
required or when input is retrieved by statements within the activity. When
using NULL, a STOP statement must be executed within the JOB activity,
otherwise the activity executes forever.

 {SQL}

SQL is used to identify input coming from an SQL table. The selection criteria for
the input is specified on the SQL SELECT statement that must immediately
follow the JOB statement. For more details on SQL statements, see the SQL
Interface Option Guide.

 {[KEY(field-name-1 ...)]}

Code the KEY fieldname subparameter for each filename of a synchronized file
input process. Keys can be any fields from the associated file. The only
exceptions are varying length fields, which cannot be used as keys. For more
detailed information on automatic input, including synchronized file processing,
see the “File Processing” chapter.

[START proc-name-1]

The optional START parameter identifies a procedure to be executed during the
initiation of the JOB.

The procedure coded in proc-name-1 is performed before the first automatic
input record is retrieved. A typical START procedure sets working storage fields
to an initial value or positions an indexed or keyed sequentially processed file to
a specific record. You cannot reference fields in automatic input files since no
records have been retrieved at this stage of processing.

[FINISH proc-name-2]

The optional FINISH parameter identifies a procedure to be executed during the
normal termination of the JOB. After the last automatic input record is
processed, the proc-name-2 procedure is performed. A typical FINISH procedure
displays control information accumulated during the activity.

Processing Activities 5–3

JOB Statement

[NAME job-name]

The optional NAME parameter names the JOB activity. Job-name can be up to 40
characters long, can contain any character other than a delimiter, and begins
with A-Z or 0-9; it cannot consist of all numeric characters. This parameter is
used only for documentation purposes. If the LINK parameter of the PARM
statement is in effect, job-name is generated into the object module as a character
constant to assist in identifying the code for the job. If present, job-name is
printed by the CA-Easytrieve Plus debugging aid. If you use the LINK
parameter, the first 8 characters (first 7 characters for VSE) of all job names must
be unique.

[{ }]
[ENVIRONMENT {NONE }]
[{COBOL}]

ENVIRONMENT (OS/390 and z/OS only) specifies to establish the proper
execution environment prior to calling any COBOL subprograms. The
environment is established prior to each JOB activity that contains a CALL
statement and is terminated after the activity for which it was established. When
used on the JOB statement, it establishes the default (NONE or COBOL) used for
a single JOB activity.

When this parameter is absent, the default for ENVIRONMENT depends on how
the ENVIRON system option was set at installation and whether or not the
ENVIRONMENT parameter of the PARM statement was specified. Using the
subparameter NONE overrides an existing default of COBOL and using COBOL
overrides a default of NONE. See the “Subprograms” chapter for more
information on the ENVIRONMENT parameter.

[CHECKPOINT (literal [USING (field-name-2...)])]
[RESTART proc-name-3]

CHECKPOINT and RESTART are IMS-only parameters for use with the
Extended Checkpoint/Restart Facility. For details see the CA-Easytrieve Plus
IMS/DLI Interface Option manual.

Job Flow

Because of a JOB statement's particular relationship with CA-Easytrieve Plus file
processing, no examples of JOB statement usage have been provided in this
chapter. The “File Processing” chapter discusses file processing techniques in
detail.

5–4 Reference Guide

JOB Statement

It is important, however, to fully understand the flow of control within a JOB
activity. The following exhibits illustrate the physical relationship between
statements in a job activity, with the implied statements attributed to JOB.

 reset working storage
 [PERFORM restart-proc]
 [PERFORM start-proc] Step 1

JOB ... retrieve automatic input
 IF EOF ... Logic generated by JOB
 reset working storage
 [PERFORM finish-proc]
 wrap-up REPORTs
 go to the next JOB/SORT activity
 END-IF

IF ... Step 2
 ...
 ... Data examination and
 ... manipulation statements
END-IF

reset working storage Step 3

GO TO JOB
 Processing of the activity
 is reinstated to get the
 next automatic input record
 ...
proc-name. PROC Step 4

 ...
END-PROC Optional programmer-written
 ... procedures and reports are
 ... placed at the end of the
REPORT activity
 ...
 ...
JOB/SORT

Processing Activities 5–5

JOB Statement

The following flow diagram illustrates the processing of a JOB activity:

5–6 Reference Guide

SORT Statement

Input records are processed one at a time. You can use any valid combination of
CA-Easytrieve Plus statements to examine and manipulate the input record. The
processing activity is repeated until the input is exhausted or until you issue a
STOP statement. RESET is a keyword on the DEFINE statement for resetting
working storage fields.

SORT Statement
Using the SORT statement, any file that can be processed sequentially can be
sorted. The following example 5.5 shows the position of a SORT activity within a
program:

Environment
...
Library
...
Activities
...
JOB
and/or {SORT ...
SORT <----------{ sort procedure
... { ...
...

Your installation's sort program performs the actual sort process. Conventional
sort interface techniques are used by invoking the sort program's E15 (input) and
E35 (output) exits. For detailed information on the available options for sort
program utilization, see your installation’s sort program manual.

Syntax

Code the required parameters (filenames and keys) immediately after the SORT
parameter. Code the optional parameters in any order. The complete syntax is:
SORT file-name-1 TO file-name-2 +

 []
 [D]
 USING (field-name-1 [IBM-sort-options] ...) +
 [JEF-sort-options]
 []

 [SIZE literal-1] +

 [WORK literal-2] +

 [BEFORE proc-name] +

 [NAME sort-name]

Processing Activities 5–7

SORT Statement

Parameters
file-name-1

Filename-1 is the name of the input file for the sort activity. Filename-1 must
reference a FILE statement that defines a SAM, VSAM, ISAM, or VFM file. The
record length of filename-1 controls the length of records to be sorted, except
when both files are fixed length. When this occurs, the length is from filename-1
or filename-2, whichever is shorter.

 TO file-name-2

The TO parameter designates the name of the output file of the sort activity.
Filename-2 must reference a FILE statement that defines a SAM, VSAM, Host
Disk, or VFM file. If filename-2 is the same as filename-1, the SORTed output is
written over the input file.

USING (field-name-1 [D]...)

The USING parameter identifies data fields in filename-1 used as sort keys. You
can code any number of fields up to your installation's sort input program's
limit. Fieldname-1 can be any field (less than 256 bytes long) in the sort input
file. (The only exceptions are variable length fields, which cannot be used as
keys.) Coding a D immediately after any fieldname-1 causes that field to be
sorted in descending order. If the D is not coded after fieldname-1, by default the
field is sorted in ascending order.

If no DBCS fields are identified as sort keys, the system sort is invoked that the
Options Module identifies. See the Getting Started for more information on the
Options Module.

The rules for supporting DBCS and MIXED fields as sort keys are:

■ All MIXED fields are defined to the sort as alphanumeric type fields.

■ Filename-1 and filename-2 must belong to the same DBCS code system. If
the system for both files is not the same, the SORT statement generates an
error.

■ Only the IBM and FACOM (JEF) Kanji sorts are supported. Therefore, if you
code a DBCS field as a sort key and the DBCS code system of filename-1 is
not IBM or JEF, the standard system sort is used and the DBCS fields are
processed as alphanumeric type fields.

■ If the DBCS code system of filename-1 is IBM or JEF but the applicable Kanji
sort is not identified in the DBCS Options Module, Any DBCS fields coded
as sort keys are passed to the system sort as alphanumeric field types.

5–8 Reference Guide

SORT Statement

■ The respective sort options are supported when support for the IBM or
FACOM sort is defined in the DBCS Options Module. You can code them for
only DBCS fields. If you do not select a sort-option for a DBCS field, the field
is defined to the sort as an alphanumeric field. If no DBCS fields are using
the IBM or JEF sort-options, the normal system sort is used. That is, the
applicable Kanji sort is used only when required.

USING (field-name-1 [IBM-sort-options] ...)

An IBM-sort-option defines the Kanji sequence technique to be applied to the
DBCS field. For more specific information regarding the different techniques,
consult the IBM Program Description and Operation Manual for the Kanji/Chinese
Sort/Merge program product.

 IBM-sort-options

field-name-1 +

[]
[BUSHU [D]]
[]
[SOKAKU [D]]
[]
[[]]
[KOKUGO (field-name-2 [SMAP field-name-3] [D] [B] [I])]
[[DMAP field-name-4]]
[[]]
[]
[[]]
[DENWA (field-name-2 [SMAP field-name-3] [D] [B] [I])]
[[DMAP field-name-4]]
[[]]

[BUSHU [D]]

This sort option invokes the Basic Radical Stroke-Count sequence for
fieldname-1. Coding a D immediately after BUSHU causes the field to be sorted
in descending Radical Stroke-Count order. If you do not code the D, by default
the field is sorted in ascending order.

[SOKAKU [D]]

This sort option invokes the Basic Total Stroke-Count sequence for fieldname-1.
Coding a D immediately after SOKAKU causes the field to be sorted in
descending Total Stroke-Count order. If you do not code the D, by default the
field is sorted in ascending order.

Processing Activities 5–9

SORT Statement

[[]]
[KOKUGO (field-name-2 [SMAP field-name-3] [D] [B] [I])]
[[DMAP field-name-4]]
[[]]

This sort option invokes one of two different Kanji sorting techniques depending
upon whether or not you choose the SMAP or DMAP keyword. Both techniques
require you to specify a phonetic syllabary field. Fieldname-2 identifies a field
defined in filename-1. Fieldname-2 must be either an alphanumeric (type A) or
DBCS (type K) field type. If fieldname-2 is alphanumeric, the field must contain
the phonetic reading of fieldname-1 in Katakana. If fieldname-2 is DBCS, it must
contain the phonetic reading of fieldname-1 represented by IBM DBCS Hiragana
or Katakana.

If you do not specify SMAP or DMAPthe Japanese Dictionary sequencing
technique is applied to fieldname-1. This technique sequences the records based
on the phonetic reading of the WHOLE Kanji field.

If you select SMAP or DMAP, then Kanji Index type processing is applied for
fieldname-1. This technique orders the records based on the phonetic reading of
each Kanji character. To do this you must supply a reading map so the sort can
relate phonetic syllabary characters to the appropriate Kanji characters. The
reading map must be in the form of an alphanumeric field specified as
fieldname-3 or fieldname-4. Fieldname-3 specifies a field defined in filename-1.
The field contains a single-map. Fieldname-4 specifies a field defined in
filename-1. The field contains a double-map. For more information on the
definition and creation of these bit map fields, see the IBM Sort/Merge Program -
Kanji/Chinese Manual.

Coding a D causes the field to be sorted in descending order. If the D is not
coded, by default the field is sorted in ascending order. Coding a B causes the
application of the BUSHU (or Radical Stroke-Count) technique as a sub-sequence
for those records that have the same phonetic reading. If you do not code B, by
default the field is sub-sequenced using the SOKAKU (or Total Stroke-count).
Coding an I causes the phonetic reading order to be the IROHAON sequence. If
you do not code I, by default the phonetic order is the Japanese Dictionary or
GOJUON sequence.

5–10 Reference Guide

SORT Statement

[[]]
[DENWA (field-name-2 [SMAP field-name-3] [D] [B] [I])]
[[DMAP field-name-4]]
[[]]

The DENWA sort option invokes one of two different forms of the Japanese
Telephone Directory sequencing technique. The form of sequencing technique
that you use depends upon whether or not you specify the SMAP or DMAP
keyword. The Telephone Directory method requires you to specify a phonetic
syllabary field. Fieldname-2 identifies a field defined in filename-1. It must be
either an alphanumeric (type A) or DBCS (type K) field type. If fieldname-2 is an
alphanumeric field type, the field must contain the phonetic reading of
fieldname-1 in Katakana. When the field contains DBCS data it must contain the
phonetic reading of fieldname-1 represented by IBM DBCS Hiragana or
Katakana.

If you do not specify SMAP or DMAP, the Simple form of the Japanese
Telephone Directory order is applied to fieldname-1. This technique sequences
the records based on the representative reading of the first Kanji character in the
field. The representative reading of the first Kanji character is obtained from a
special representative reading table based on the Kanji character itself and the
voiceless sound of the first phonetic syllabary character in fieldname-2.

If you specify SMAP or DMAP, the All-Digit Japanese Telephone Directory
sequence is applied. This technique orders the records based on the
representative reading of all the Kanji characters in the field. Sequencing is
determined by applying representative reading to each Kanji character. For this,
a reading map field is required, in the form of an alphanumeric field specified as
fieldname-3 or fieldname-4. The reading map field identifies a bit map that
allows the sort to relate phonetic syllabary characters to the appropriate Kanji
characters. Fieldname-3 specifies a field defined in filename-1. The field contains
a single-map. Fieldname-4 specifies a field defined in filename-1. The field
contains a double-map. For more information on the definition and creation of
these bit map fields, see the IBM Sort/Merge Program - Kanji/Chinese Manual.

Coding a D causes the field to be sorted in descending order. If you do not code
D, by default the field is sorted in ascending order. Coding a B causes the
application of the BUSHU (or Radical Stroke-Count) technique as a sub-sequence
for those records that have the same phonetic reading. If you do not code B, by
default the field is sub-sequenced using the SOKAKU (or Total Stroke-count).
Coding an I causes the phonetic reading order to be the IROHAON sequence. If
you do not code I, by default the phonetic order is the Japanese Dictionary or
GOJUON sequence.

Processing Activities 5–11

SORT Statement

USING (field-name [JEF-sort-options] ...

A JEF-sort-option defines the Kanji sequence technique to be applied to the
DBCS field. For more specific information regarding the different techniques,
consult the FACOM Sort/Merge Program Description Manual.

 JEF-sort-options

field-name-1 +

 [{ }]
 [{BUSHU }]
 [({SOKAKU} ...)]
 [{ON }]
 [{KUN }]
 [{ }]
 []
 [KOKUGO (field-name-2 [D] [I])]
 []
 [DENWA (field-name-2 [D] [I] [DLM])]
 []

[{BUSHU }]
[({SOKAKU} ...)]
[{ON }]
[{KUN }]

Each of these keywords identify a unique form of Kanji sequencing.

■ BUSHU—ordered by the Radical Stroke count of the Kanji character.

■ SOKAKU—ordered by the Total Stroke count of the Kanji character.

■ ON—ordered by the 'ON' or Chinese pronunciation of the Kanji Character.

■ KUN—ordered by the 'KUN' or Japanese pronunciation of the Kanji
Character.

Specify one or more of these keywords to indicate the ordering technique that is
to apply to fieldname-1. If you code more than one keyword, they must be coded
in major to minor order. Each minor ordering technique is used to order those
records that are the same after applying the preceding ordering technique. For
example if you coded "USING (FIELD-ONE (SOKAKU ON KUN))"
FIELD-ONE would be ordered using the Total Stroke Count of the Kanji. Those
records having the same count would then be ordered by their ON reading. If
there are records still the same, they would be ordered by their KUN or Japanese
reading.

Each of the keywords can only be coded once after fieldname-1.

5–12 Reference Guide

SORT Statement

[KOKUGO (field-name-2 [D] [I])]

The KOKUGO sort option invokes the Japanese Dictionary sequencing technique
for fieldname-1. This technique sequences the records based on the phonetic
reading of the WHOLE Kanji field. This technique requires you to specify a
phonetic syllabary field. Fieldname-2 identifies a field defined in filename-1.
Fieldname-2 must be either an alphanumeric (type A) or DBCS (type K) field
type. If fieldname-2 is an alphanumeric field type, the field must contain the
phonetic reading of fieldname-1 in Katakana. When the field contains DBCS
format data, it must contain the phonetic reading of fieldname-1 represented by
JEF DBCS Hiragana or Katakana.

Coding a D causes the field to be sorted in descending order. If you do not code
the D, by default the field is sorted in ascending order. Coding an I causes the
phonetic reading order to be the IROHAON sequence. If you do not code I, by
default the phonetic order is the Japanese Dictionary or GOJUON sequence.

[DENWA (field-name-2 [D] [I] [DLM])]

The DENWA sort option invokes the Japanese Telephone Directory sequencing
technique for fieldname-1. This technique requires you to specify a phonetic
syllabary field. Fieldname-2 identifies a field defined in filename-1. Fieldname-2
must be either an alphanumeric (type A) or DBCS (type K) field type. If
fieldname-2 is an alphanumeric field type, the field must contain the phonetic
reading of fieldname-1 in Katakana. When the field contains DBCS format data,
it must contain the phonetic reading of fieldname-1 represented by JEF DBCS
Hiragana or Katakana.

Coding a D causes the field to be sorted in descending order. If you do not code
the D, by default the field is sorted in ascending order. Coding an I causes the
phonetic reading order to be the IROHAON sequence. If you do not code I, by
default the phonetic order is the Japanese Dictionary or GOJUON sequence. You
can code the DLM subparameter if both fieldname-1 and fieldname-2 contain
space characters that act as delimiters thus permitting the JEF Kanji SORT to
associate the phonetic characters in fieldname-2 with the Kanji characters in
fieldname-1. If no such delimiters exist, you should not code DLM. When you do
not code the DLM subparameter, the NODLM sort option is assumed.

[SIZE literal-1]

Since the number of records in files created by previous activities is known, that
information is automatically supplied to the sort program. If the file was not
created by a previous activity, you can enhance sort efficiency by supplying the
approximate number of records as literal-1 on the optional SIZE parameter. The
default file size is 1000 records.

Processing Activities 5–13

SORT Statement

[WORK literal-2]

The literal-2 value of the optional WORK parameter establishes the number of
work data sets used by the sort program. This parameter overrides the
NUMWORK Options Table entry.

For VSE, literal-2 must be one of the following:

■ DA to indicate a multi-extent direct access type data set is used.

■ A value from one to eight to specify the number of sequential disk type data
sets used.

For OS/390 and z/OS, literal-2 must be one of the following:

■ A zero to indicate that DD statements are supplied for work data sets.

■ A value from 1 to 31 to indicate the number of work data sets that the sort
program dynamically allocates.

[BEFORE proc-name]

The optional BEFORE parameter identifies a procedure that pre-screens,
modifies, and selects input records for the sort. Proc-name indicates the PROC
statement that identifies the sort procedure. If you do not specify BEFORE
proc-name, all records in filename-1 are sorted and output onto filename-2. See
the SELECT Statement description later in this chapter for selection of records to
be sorted.

[NAME sort-name]

The optional NAME parameter names the SORT activity. Sort-name can be up to
40 characters long, can contain any character other than a delimiter, and begin
with A-Z or 0-9; it cannot consist of all numeric characters. This parameter is
used only for documentation purposes.

Sorting Files

The following output file contains all of the records of the input file sorted into
ascending sequence by the values of fields REGION and BRANCH.

FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH) NAME MYSORT
JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE REGION BRANCH NAME

5–14 Reference Guide

SORT Statement

Sort Procedures

All input records are normally sorted and output onto the TO file. The output
file usually has the same format and length as the input file. However,
sometimes it is desirable to sort only certain records and/or to modify the
contents. To do this, you must write a sort procedure that must immediately
follow the SORT statement.

Note: ENVIRONMENT COBOL is not support in SORT procedures.

You can code any valid CA-Easytrieve Plus statement in a sort procedure;
however, you cannot code statements that generate input/output. Invalid
statements are:
DISPLAY
DLI
GET
IDMS
POINT
PRINT
PUT
READ
SQL
WRITE

Note: For debugging purposes, you can DISPLAY to the system output device
(SYSPRINT/SYSLST).

The only valid field references within a sort procedure are:

■ Any field of the input file (filename-1)

■ Any working storage field

■ System defined fields, such as SYSDATE and RECORD-LENGTH.

Processing Activities 5–15

SORT Statement

Sort Flow

The following example illustrates the flow of a SORT activity. The basic format
of the SORT statement, as shown earlier in this chapter, is:
SORT filea TO fileb USING fld1, ... [BEFORE proc-name]

Retrieve first record from input file (filea) Step 1
 Logic generated by the
DO WHILE NOT EOF filea SORT statement

 IF BEFORE was specified Step 2
 If BEFORE requested
 IF RESET working storage fields are specified Step 3
 Reset all RESET working storage fields Re-initialize RESET
 END-IF fields

 PERFORM proc-name Step 4
 Perform the user's proc
 IF SELECT statement was executed Step 5
 pass record to SORT SELECT executed?
 END-IF pass record to SORT

 ELSE
 Step 6
 pass record to SORT No BEFORE proc,
 pass all to SORT
 END-IF
 Step 7
 Retrieve next record from input file (filea) Get next record from
 input file
END-DO
 Step 8
Perform SORT process (USING fld1, ...) Actually SORT the
 records
DO WHILE sorted records exist Step 9
 Write sorted record to output file (fileb) Write sorted records to
END-DO output file

proc-name. PROC Step 10
... Optional user-written
 SELECT procedure is placed
... after the SORT
END-PROC

JOB/SORT

5–16 Reference Guide

SORT Statement

This diagram shows the flow of a SORT activity using a flow diagram.

Processing Activities 5–17

SELECT Statement

SELECT Statement
Input records are supplied to your sort procedure one at a time. If a BEFORE
procedure is used, the SELECT statement must be executed for each record that
you want to sort. The syntax of the SELECT statement is:

Syntax
SELECT

SELECT only sets a switch to cause record selection at a later time. If you
SELECT a record twice, it only appears once on the SORTed file.

Sorting a Selected Portion of a File

The following example of a sort activity shows an output file that contains only a
reordered subset of the input file. The output file contains only those records for
which the SELECT statement is executed.

FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTWRK FB(150 1800) VIRTUAL
COPY PERSNL
SORT PERSNL TO SORTWRK USING +
 (REGION, BRANCH, DEPT, +
 NAME-LAST, NAME-FIRST) +
 NAME MYSORT BEFORE SCREENER
*
SCREENER. PROC
 IF MARITAL-STAT = 'S' AND SEX = 1
 SELECT
 END-IF
END-PROC
*
JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
LINE REGION BRANCH DEPT NAME-LAST NAME-FIRST

5–18 Reference Guide

Chapter

Assignments and Moves 6

This chapter discusses the ways to move or manipulate data within your
program using the Assignment, MOVE, and MOVE LIKE statements.

The Assignment statement establishes the value of a field as a result of simple
data movements, an arithmetic expression, or logical bit manipulation.

An arithmetic expression produces a numeric value by adding, subtracting,
multiplying, or dividing numeric quantities.

The MOVE statement transfers character strings from one storage location to
another.

The MOVE LIKE statement copies fields with identical field names from one file
to another.

Arithmetic Expressions
To fully understand how the Assignment statement establishes the value of a
field as a result of an arithmetic expression, you need to know how arithmetic
expressions work within CA-Easytrieve Plus.

An arithmetic expression enables two or more numeric quantities to be
combined to produce a single value. Arithmetic expressions can be used in
Assignment statements and in field relational conditions.

Syntax
{[] } {*} {[] }
{[+]field-name-1} {/} {[+] field-name-2}
{[-]literal-1 } {+} {[-] literal-2 } ...
{[] } {-} {[] }

Assignments and Moves 6–1

Arithmetic Expressions

Operation

The CA-Easytrieve Plus arithmetic operators are:
* multiplication
/ division
+ addition
- subtraction

All fields and literals in an arithmetic expression must be numeric.

CA-Easytrieve Plus follows the standard mathematical order of operations when
computing arithmetic expressions: multiplication and division are performed
before addition and subtraction, in order from left to right.

The following exhibit illustrates how arithmetic expressions are evaluated:

Parentheses

You can use parentheses to override the normal order of evaluation. Any level of
parenthesis nesting is permitted. Expressions are evaluated within parentheses
first. Evaluation proceeds from the innermost parenthesis level to the outermost.

The following exhibit illustrates how parentheses found within arithmetic
expressions are evaluated:

6–2 Reference Guide

Arithmetic Expressions

Evaluations

When evaluating an arithmetic expression, 30 decimal digits at most are
maintained for each operation.

During the calculation of:
 { } {*}
field-name-1 {= } value-1 {/} value-2
 {EQ} {+}
 { } {-}

the length and number of decimal places maintained during the calculation
(intermediate results) is determined for each operation according to the rules
shown in the following table.

If Operation is: Number of Decimal Places Equals:

Addition or
Subtraction

Decimal places:
The larger of the number of decimal places in value-1 or
value-2.
Length:
The larger of the number of integer places in value-1 or
value-2, plus the number of decimal places in result plus
1.

Multiplication Decimal places:
The sum of the number of decimal places in value-1 and
value-2.
Length:
The sum of the length of value-1 and value-2.

Division Decimal places
The larger of:
a) The number of decimal places in value-1 minus the
number of decimal places in value-2.
b) The number of decimal places in fieldname-1 plus one.
c) 4 decimal places.
Length:
The number of integer places in value-1 plus the number
of decimal places in the result.

If the length of the intermediate result has more than 30 digits, the excess digits
must be truncated. For addition, subtraction, and division, the excess digits are
always truncated from the left side of the result.

Assignments and Moves 6–3

Assignment Statement

For multiplication, however, the truncation is first attempted on the right side of
the result. The minimum number of decimal places to be maintained in the result
is the number of decimal places in fieldname-1 plus one. If the number of
decimal places in the result is less than or equal to this minimum, no digits are
truncated from the right side of the result. Otherwise, the number of digits
truncated from the right is the smaller of a) the number of excess digits or b) the
difference between the number of decimal places in the result and the minimum.

When truncation occurs on the right, both the length and number of decimal
places in the result are reduced by the number of digits truncated. If there are
still excess digits after right truncation, these excess digits are truncated from the
left.

For example, assume that value-1 and value-2 both have a length of 18 digits and
both have 4 decimal places. Then, according to the above table, the result is a
length of 36 digits and 8 decimal places. In this case, the number of excess digits
is 6. Then, for various values of the number of decimal places in fieldname-1, the
result is truncated as shown in the following table.

Decimal places in Digits truncated Decimal places in
fieldname-1 on right on left result

2
3
4
5
6
7
8

0
1
2
3
4
5
6

6
5
4
3
2
1
0

fewer than 2
2
3
4
5
6

more than 6

Assignment Statement
The Assignment statement establishes a value in a field. The value can be a copy
of the data in another field or literal, or it can be the result of an arithmetic or
logical expression evaluation. The two formats of the Assignment statement are:

Format 1
 [] { } { }
 [ROUNDED] { =} {field-name-2 }
field-name-1 [INTEGER] [TRUNCATED] {EQ} {literal-1 }
 [] { } {arithmetic expression}

Format 2
 { } {AND} { }
field-name-1 { =} field-name-2 {OR } {field-name-3}
 {EQ} {XOR} {literal-2 }

6–4 Reference Guide

Assignment Statement

Format 1 (Normal Assignment)

Format 1 sets the value of fieldname-1 equal to the value of fieldname-2, literal-1,
or the arithmetic expression. The rules of the statement are shown in the
following table.

Specification Rule Resulting Value

If fieldname-1 is alphanumeric
and the right-hand side is:

fieldname-2
(alphabetic)

The resulting value of fieldname-1 is padded
on the right with spaces or truncated as
necessary.

(numeric) The resulting value of fieldname-1 is the
non-quantitative zoned decimal equivalent of
fieldname-2 with padding or truncation on the
left as necessary.

 or

literal-1
(can be alphanumeric
or hexadecimal)

The resulting value of fieldname-1 is padded
on the right with spaces as necessary.

When fieldname-1 is numeric,
use:

fieldname-2
(must be numeric)

The result is padded on the left with zeros to fit
the description of fieldname-1. If the value of
the assignment is too large to be stored into
fieldname-1, it is truncated as follows:

 or

literal-1
(must be numeric)

- For Binary numbers (numbers expressed in
Two's Complement form), the sign and high
order bits are truncated from the left as
necessary, and the remaining left-most bit
becomes the new sign.

 or

arithmetic expression
(all elements must be numeric)

- For Zoned Decimal, Packed Decimal, and
Unsigned Packed Decimal numbers (numbers
expressed in Sign-Magnitude form), the high
order digits are truncated from the left as
necessary.

Assignments and Moves 6–5

Assignment Statement

[INTEGER]

Use the INTEGER option after fieldname-1 to ignore the fractional portion of the
value being assigned. INTEGER causes only the numerals to the left of the
decimal point to be transferred during the assignment.

[]
[ROUNDED]
[TRUNCATED]
[]

Use ROUNDED or TRUNCATED when the receiving field (fieldname-1) is too
small to handle the fractional result of the assignment. TRUNCATED is the
default.

Use the ROUNDED option after fieldname-1 to round off the fractional result of
the assignment statement. Rounding takes place in the commonly accepted
manner. That is, the least significant digit of the result (receiving field) has its
value increased by one when the most significant digit of the excess decimal
digits is greater than or equal to five. For example, if 10.75 is the value of the
sending field and the receiving field has one decimal place, ROUNDED causes
the receiving field to be 10.8.

Use the TRUNCATED option to truncate the result of the assignment statement.
Low order digits are truncated on the right as necessary when the result is
moved to the receiving field.

If INTEGER is used with ROUNDED, the result is rounded to the nearest integer
before the INTEGER function is performed. If INTEGER is used with
TRUNCATED, then only the INTEGER function is performed.

Assume:
SENDFLD W 5 N 2 VALUE(10.75)
RCVFLD W 5 N 1

Then:
Assignment Statement RCVFLD Result

RCVFLD INTEGER ROUNDED = SENDFLD 11.0
RCVFLD INTEGER TRUNCATED = SENDFLD 10.0
RCVFLD INTEGER = SENDFLD 10.0
RCVFLD ROUNDED = SENDFLD 10.8
RCVFLD TRUNCATED = SENDFLD 10.7
RCVFLD = SENDFLD 10.7

INTEGER, ROUNDED, and TRUNCATED are valid only with numeric fields.

6–6 Reference Guide

Assignment Statement

Format 2 (Logical Expression)

Format 2 of the Assignment statement sets the value of fieldname-1 equal to the
result of evaluating a logical expression. The value of fieldname-2 is logically
acted upon by the value of fieldname-3 or literal-2. The lengths of all values must
be the same and literal-2 must be hexadecimal. The logic operators are processed
as follows:

AND zero bits in fieldname-3 or literal-2 are carried forward to fieldname-2
and the result is placed in fieldname-1.

OR one bit in fieldname-3 or literal-2 is carried forward to fieldname-2 and
the result is placed in fieldname-1.

XOR corresponding bits of fieldname-3 or literal-2, and fieldname-2 must be
opposite (zero and one) to result in a one bit in fieldname-1.

Examples

The following examples of the Assignment statement illustrate its various rules:

Assignment Format 1 (Fieldname-1 is Alphanumeric)

Format 1
F1A * 4 A
F2A1 W 1 A VALUE 'A'
F2A2 W 6 A VALUE 'ABCDEF'
F2N1 W 2 N VALUE 12
F2N2 W 3 P 1 VALUE 1234.5
...
 Resulting Value

F1A = F2A1 'A '
F1A = F2A2 'ABCD'
F1A = F2N1 '0012'
F1A = F2N2 '2345'
F1A = X'FF' X'FF404040'

Note: For an example using varying length alphanumeric fields, see the DEFINE
Statement Examples section in the “Data Definition” chapter.

Assignments and Moves 6–7

Assignment Statement

Assignment Format 1 (Fieldname-1 is Numeric)
Statements:

DEFINE F1N W 4 N 1
DEFINE F2N1 W 4 N 1 VALUE 1
DEFINE F2N2 W 4 N 1 VALUE 2
DEFINE F2N3 W 4 N 1 VALUE 3
JOB INPUT NULL NAME MYPROG
 F1N = F2N1 + F2N2 + F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 + F2N3 = ' F1N
 F1N = F2N1 + F2N2 / F2N3
 DISPLAY SKIP 2 +
 'F1N = F2N1 + F2N2 / F2N3 = ' F1N
 F1N = (F2N1 + F2N2) / F2N3
 DISPLAY SKIP 2 +
 'F1N = (F2N1 + F2N2) / F2N3 = ' F1N
 F1N = ((F2N1 / F2N2) * 100) + .5
 DISPLAY SKIP 2 +
 'F1N = ((F2N1 / F2N2) * 100) + .5 = ' F1N
 STOP

Produce:
 Resulting
 Value

 F1N = F2N1 + F2N2 + F2N3 = 6.0
 (1 + 2 + 3)

 F1N = F2N1 + F2N2 / F2N3 = 1.6
 (1 + 2 / 3)
 (1 + 0.6666)

 F1N = (F2N1 + F2N2) / F2N3 = 1.0
 ((1 + 2) / 3)
 (3 / 3)

 F1N = ((F2N1 / F2N2) * 100) + .5 = 50.5
 ((1 / 2) * 100) + .5
 ((0.5 * 100) + .5)
 (50 + .5)

Assignment Format 2 (Logical Expression Evaluation)
Statements:

 DEFINE F1 W 2 P MASK HEX
 DEFINE F2 W 2 P VALUE X'123D'
 JOB INPUT NULL NAME MYPROG
 F1 = F2 AND X'FFFE'
 DISPLAY SKIP 2 +
 'F1 = F2 AND X''FFFE'' = ' F1
 F1 = F2 OR X'000F'
 DISPLAY SKIP 2 +
 'F1 = F2 OR X''000F'' = ' F1
 F1 = F2 XOR X'FFFF'
 DISPLAY SKIP 2 +
 'F1 = F2 XOR X''FFFF'' = ' F1
 F1 = F2 XOR F2
 DISPLAY SKIP 2 +
 'F1 = F2 XOR F2 = ' F1
 STOP

6–8 Reference Guide

Assignment Statement

Produce:

 Resulting
 Value

 F1 = F2 AND X'FFFE' = 123C

 F1 = F2 OR X'000F' = 123F

 F1 = F2 XOR X'FFFF' = EDC2

 F1 = F2 XOR F2 = 0000

EBCDIC To DBCS Conversion

When conversion from EBCDIC format to DBCS format is required for the
Assignment statement, the EBCDIC data is converted using the technique
defined for Katakana conversion literals. This is what is converted:

■ The lowercase EBCDIC values into the applicable DBCS Katakana characters

■ The other valid EBCDIC characters into their equivalent DBCS English
values

■ Any non-valid EBCDIC values into DBCS spaces.

Format 1 (Normal Assignment)

Format 1 sets the value of fieldname-1 equal to the value of fieldname-2, literal-2,
or the arithmetic expression. The rules of the statement are shown below.

Format 1
Specification Rule

Resulting Value

If fieldname-1 is DBCS and the
right side is:

fieldname-2
(DBCS)

Fieldname-2 is converted into the DBCS code
system of fieldname-1. The resulting value of
fieldname-1 is padded on the right with DBCS
spaces or truncated on the right as necessary.

(MIXED) Each EBCDIC byte of fieldname-2 is converted
into its equivalent DBCS value. Any DBCS data
identified by shift codes is converted to the
DBCS code system of fieldname-1. The shift
codes are then removed. The resulting value of
fieldname-1 is padded on the right with DBCS
spaces, or truncated on the right as necessary.

Assignments and Moves 6–9

Assignment Statement

Format 1
Specification Rule Resulting Value

(alphabetic) Each byte of fieldname-2 is converted into its
equivalent DBCS value and stores the resulting
value in fieldname-1. The resulting value of
fieldname-1 is padded on the right with DBCS
spaces or truncated on the right as necessary.

If fieldname-1 is DBCS and the
right side is:

(numeric)
 or
(packed)
 or
(binary)

The resulting value of fieldname-1 is the zoned
decimal equivalent of fieldname-2 with each
byte converted into the DBCS equivalent.
Before the conversion, the result is padded on
the left with DBCS zeros, or truncated on the
left.

literal-1
(DBCS)

The resulting value of fieldname-1 is padded
on the right with DBCS spaces or truncated on
the right as necessary.

(MIXED) Each EBCDIC byte is converted into its
equivalent DBCS value. EASYTRIEVE Plus
converts any DBCS data identified by shift
codes, into the DBCS code system of
fieldname-1. The shift codes identify the code
system of this DBCS data. EASYTRIEVE Plus
removes the shift codes during the conversion.
The resulting value of fieldname-1 is padded
on the right with DBCS spaces or truncated on
the right as necessary.

If fieldname-2 is DBCS and the
left side is:

(alphanumeric)
 or
(hexadecimal)

Each byte of literal-1 is converted into its
equivalent DBCS value and stores the result in
fieldname-1. The resulting value of fieldname-1
is padded on the right with DBCS spaces or
truncated on the right as necessary.

fieldname-1
(DBCS)

Fieldname-2 is converted into the DBCS code
system of fieldname-1. The resulting value of
fieldname-1 is padded on the right with DBCS
spaces or truncated on the right as necessary.

6–10 Reference Guide

Assignment Statement

Format 1
Specification Rule Resulting Value

If fieldname-2 is DBCS and the
left side is:

(MIXED) Fieldname-2 is converted into the DBCS code
system of fieldname-1. The shift codes defined
for the code system of fieldname-1 are added
and the resulting value of fieldname-1 is
padded on the right with EBCDIC spaces or
truncated on the right as necessary. When
truncation occurs DBCS characters are not split.
Truncation is to the nearest double byte.

Fieldname-2
(DBCS)

Fieldname-2 is converted into the DBCS code
system of fieldname-1. The shift codes defined
for the code system of fieldname-1 are added
and the resulting value of fieldname-1 is
padded on the right with EBCDIC spaces or
truncated on the right as necessary. When
truncation occurs DBCS characters are not split.
Truncation is to the nearest double byte.

If fieldname-1 is MIXED and
the right side is:

(MIXED) The EBCDIC data in fieldname-2 is moved
unaltered to fieldname-1. The DBCS data
identified by shift codes is converted to the
DBCS code system of fieldname-1. Shift codes
are also converted to meet the requirements of
that code system. The resulting value of
fieldname-1 is padded on the right with
EBCDIC spaces or truncated on the right as
necessary. When truncation occurs within the
DBCS portion of a field, DBCS characters are
not split. Truncation is to the nearest double
byte.

(alphabetic) Each byte of fieldname-2 is moved unaltered to
fieldname-1. The resulting value of fieldname-1
is padded on the right with EBCDIC spaces or
truncated on the right as necessary.

Assignments and Moves 6–11

Assignment Statement

Format 1
Specification Rule Resulting Value

If fieldname-1 is MIXED and
the right side is:

(numeric)
 or
(packed)
 or
(binary)

The resulting value of fieldname-1 is the zoned
decimal equivalent of fieldname-2 with
padding or truncation on the left (if necessary).

literal-1
(DBCS)

Fieldname-2 is converted into the code system
of fieldname-1 and adds the correct shift codes.
The result is padded on the right with EBCDIC
spaces.

(MIXED) Each byte is moved to fieldname-1 and the
result is padded on the right with EBCDIC
spaces. Any DBCS data identified by shift
codes is converted to the DBCS code system of
fieldname-1. The shift codes are also changed
to the valid values.

(alphanumeric)
 or
(hexadecimal)

Each byte of literal-1 is moved to fieldname-1
unaltered. The resulting value of fieldname-1 is
padded on the right with EBCDIC spaces.

fieldname-1
(DBCS)

Each EBCDIC byte of fieldname-2 is converted
into its equivalent DBCS value. Any DBCS
bytes identified by shift codes are converted to
the DBCS code system of fieldname-1. Shift
codes are removed. The resulting value of
fieldname-1 is padded to the right with DBCS
spaces or truncated to the right as necessary.

(MIXED) The EBCDIC data in fieldname-2 is moved
unaltered to fieldname-1. The DBCS data
identified by shift codes is converted to the
DBCS code system of fieldname-1. The shift
codes are also converted to meet the
requirements of that code system. The resulting
value of fieldname-1 is padded on the right
with EBCDIC spaces or truncated on the right
as necessary. When truncation occurs within
the DBCS portion of a field, DBCS characters
are not split. Truncation is to the nearest double
byte.

6–12 Reference Guide

MOVE Statement

MOVE Statement
MOVE transfers character strings from one storage location to another. MOVE is
especially useful for moving data without conversion and for moving variable
length data strings. The formats of the MOVE statement syntax are:

Syntax

Format 1
 {file-name-1 } []
 {record-name-1} [field-name-2] +
MOVE {field-name-1 } [literal-2]
 {literal-1 } []

 {file-name-2 } []
TO {record-name-2} [field-name-4] [FILL literal-4]
 {field-name-3 } [literal-3]
 { } []

Format 2
 {SPACE }
 {SPACES}
MOVE {ZERO } TO field-name-3 ...
 {ZEROS }
 {ZEROES}
 {HIGH-VALUES }
 {LOW-VALUES }

Format 1

When you specify Format 1, data moves from left to right as if both areas were
alphanumeric. The data moved is unconverted.

Format 2

When you specify Format 2, the receiving areas are set to the appropriate format
of data, for example, packed zero for fields with a type of P.

Assignments and Moves 6–13

MOVE Statement

Variables

The first parameter after the MOVE keyword (filename-1, record-name-1,
fieldname-1, literal-1, SPACE, ZERO, HIGH-VALUES, or LOW-VALUES) is the
sending data area. The default length of filename-1 is the current value of
filename-1:RECORD-LENGTH. The length of the sending field is optionally
overridden with fieldname-2's current value or literal-2.

Fieldname-3, filename-2, or record-name-2 is the receiving data area. The default
length of filename-2 is the current value of filename-2:RECORD-LENGTH. The
length of the receiving field is optionally overridden with fieldname-4's current
value or literal-3. In format 2, multiple fieldnames can be used for fieldname-3.

When fieldname-3 is a DBCS format field, the space character of the DBCS code
system of fieldname-3 is moved to the field. If fieldname-3 is a MIXED format
field, EBCDIC spaces are moved to the field.

Longer sending fields are truncated on the right. Longer receiving fields are
padded on the right with EBCDIC spaces or the optional literal-4.

When literal-1 is a non-numeric literal, it must be enclosed within apostrophes.

For EBCDIC fields, literal-4 must be one character. For DBCS fields, literal-4
must be two characters. Non-numeric literals must be enclosed within
apostrophes. When literal-4 contains numeric characters, they are treated as a
zoned decimal value.

Filename-1, record-name-1, filename-2, and record-name-2 can be any file or
database record with current data availability. When filename-1 is an IMS/DLI
or IDMS file, all records in the file are moved.

6–14 Reference Guide

MOVE LIKE Statement

Example

The following exhibit demonstrates the use of the MOVE statement and shows
the results:
Statements:

DEFINE ASTERISK-LINE W 10 A VALUE '=========='
DEFINE COUNTER-1 W 10 N VALUE 99
DEFINE COUNTER-2 W 2 N VALUE 66
JOB INPUT NULL NAME MYPROG
 DISPLAY COUNTER-1 +2 COUNTER-2
 MOVE ZEROS TO COUNTER-1 COUNTER-2
 DISPLAY COUNTER-1 +2 COUNTER-2
 DISPLAY ASTERISK-LINE
 MOVE '*' TO ASTERISK-LINE FILL '*'
 DISPLAY ASTERISK-LINE
 STOP

Produce:

0000000099 66
0000000000 00
==========

MOVE LIKE Statement
MOVE LIKE moves the contents of fields with identical names from one file to
another. Data movement and conversion follow the rules of the Assignment
statement. The MOVE LIKE statement syntax is:

Syntax
 { } { }
MOVE LIKE {file-name-1 } TO {file-name-2 }
 {record-name-1} {record-name-2}

Operation

When you issue a MOVE LIKE statement, the contents of fields in filename-1 or
record-name-1 replace the contents of fields with identical names in filename-2
or record-name-2. When filename-2 or record-name-2 contain overlapping fields,
the order in which the fields are defined is important. The moves occur starting
with the last identically named field in filename-2 or record-name-2 and ending
with the first identically named field in the file. The Example, shown later,
illustrates the use of the MOVE LIKE statement.

Assignments and Moves 6–15

MOVE LIKE Statement

IDD Processing of MOVE LIKE (CA-IDMS)

In IDD processing, the fields of a file defined by an IDD statement are organized
into group item structures. A group item is a field subdivided by smaller fields.
The smaller fields can themselves be group items and therefore subdivided by
even smaller fields. A group item is said to “own” its subdividing fields. A field
without subdivision is called an “elementary” field.

In IDD processing, MOVE LIKE assigns a new value to the receiving field if all of
the following conditions are met:

■ The sending and receiving fields have matching names.

■ The sending and receiving fields have matching qualifier (group item)
names.

■ Either the sending or receiving field is an elementary field.

Record name qualifiers do not participate in the process of matching qualifiers
between two fields. For example, in a MOVE LIKE from a record to a file
containing records, no matching is done between the record names. Therefore,
fields can be matched to receiving fields regardless of which records the
receiving fields are in. One source field can be matched to a field under one
record and another source field can be matched to a field under a different
record.

Example
FILE PERSNL FB(150 1800)
 REGION 1 1 N
 BRANCH 2 2 N
 NAME 17 16 A
 NAME-LAST 17 8 A
 NAME-FIRST 25 8 A
FILE MYFILE FB(150 1800)
 COPY PERSNL
JOB INPUT PERSNL NAME MYPROG
 MOVE LIKE PERSNL TO MYFILE
 PUT MYFILE

In the above example, MOVE LIKE generates the following Assignment
statements:
MYFILE:NAME-FIRST = PERSNL:NAME-FIRST
MYFILE:NAME-LAST = PERSNL:NAME-LAST
MYFILE:NAME = PERSNL:NAME
MYFILE:BRANCH = PERSNL:BRANCH
MYFILE:REGION = PERSNL:REGION

Whatever values were in the fields of the file PERSNL are now found in the
fields of the file MYFILE.

6–16 Reference Guide

Chapter

7 Decision and Branching Logic

Certain statements are used to control the execution of your program by means
of decision and branching logic. These statements govern the flow of execution
in your program depending on the truth value of the conditional expressions.

The following statements are associated with CA-Easytrieve Plus decision and
branching logic and are discussed in this chapter:
IF, ELSE-IF, ELSE, and END-IF
DO WHILE, DO UNTIL, and END-DO
CASE
GOTO
PERFORM
proc-name. PROC
Statement Label
STOP.

Conditional Expressions
Conditional expressions used as parameters of IF, ELSE-IF, and DO statements
offer an alternative to the normal top to bottom execution of statements.
Conditional expressions are also used in the WHILE subparameter of the
RETRIEVE statement in the IMS/DLI and CA-IDMS interfaces. The syntax of a
conditional expression is:
{IF }
{ELSE-IF } [{ }]
{DO WHILE } condition[{AND} condition]...
{DO UNTIL } [{OR }]
{RETRIEVE...WHILE}

Decision and Branching Logic 7–1

Conditional Expressions

Seven different conditions are accepted:

■ Field Relational

■ Field Series

■ Field Class

■ Field Bits

■ File Presence

■ File Presence Series

■ Record Relational.

The following are skeletal examples of each type of conditional expression used
in an IF statement:
Field Relational - IF field-1 = field-2
Field Series - IF field-1 = field-2, field-3, field-4
Field Class - IF field-1 ALPHABETIC
Field Bits - IF field-1 ON X'0F4000'
File Presence - IF EOF file-name
File Presence Series - IF MATCHED file-1, file-2, file-3
Record Relational - IF DUPLICATE file-name

Simple Conditions

There are five simple conditions (having at most two operands) and two
extended conditions (having potentially an unlimited number of operands). The
simple conditions are:

■ Field Relational

■ Field Class

■ Field Bits

■ File Presence

■ Record Relational.

Extended Conditions

The extended conditions are:

■ Field Series

■ File Presence Series.

7–2 Reference Guide

Conditional Expressions

DBCS Considerations

The following conditions provide support for DBCS and MIXED fields:

■ Field Relational

■ Field Series

■ Field Class

■ Field Bits.

As with the data equates, when conversion from EBCDIC to DBCS format is part
of the conditional expression, The EBCDIC data is converted using the technique
defined for Katakana conversion literals. This is what is converted:

■ Lowercase EBCDIC values into the applicable DBCS Katakana characters

■ Other valid EBCDIC characters into their equivalent English values

■ Non-valid EBCDIC values into DBCS spaces.

Varying Length Fields

Comparisons of varying length fields (fields that use the VARYING option of the
DEFINE statement) are based on the length of the data at the time of the
comparison with the following exceptions.

■ If the subject is a zero length VARYING field and the object is either null (' ')
or another VARYING field of length zero, the comparison is true.

■ If the subject is a zero length VARYING field and the object is not either null
(' ') or another VARYING field of length zero, the comparison is false.

See the “Data Definition” chapter for more details on variable length fields.

Combined Conditions

Any of these conditions, simple and extended, can be combined using the logical
connectors AND or OR in any combination.

Decision and Branching Logic 7–3

Field Relational Condition

In the case of combined conditions, those connected by AND are evaluated first.
The connected condition is true only if all of the conditions are true. The
conditions connected by OR are then evaluated. The combined condition is true
if any of the connected conditions are true. You can use parentheses to override
the normal AND/OR relationships. The exhibit below illustrates the results of
combining conditions with AND, OR, and parentheses. The values x, y, and z
represent any condition.

 x y z x OR x AND x OR (x OR y)
 y OR z y AND z y AND z AND z
True True True True True True True
True True False True False True False
True False True True False True True
True False False True False True False
False True True True False True True
False True False True False False False
False False True True False False False
False False False False False False False

Field Relational Condition
The field relational condition compares fields with values. Its syntax is:

Syntax
 Relational
 Subject Operator Object

{IF } {EQ = }
{ELSE-IF } {NE ¬= NQ } {field-name-2 }
{DO WHILE } field-name-1 {LT < LS } {literal }
{DO UNTIL } {LE <= LQ ¬>} {arithmetic expression}
{RETRIEVE ... WHILE} {GT > GR }
 {GE >= GQ ¬<}

Operation

Subject

Fieldname-1 is the subject of the comparison.

Relational Operator

Code any of the relational operators to control the condition's evaluation process.

7–4 Reference Guide

Field Relational Condition

Object

Code fieldname-2, a literal, or an arithmetic expression to designate the object of
the comparison. Note that alphanumeric literals must be enclosed in
apostrophes. See Arithmetic Expressions in the “Assignments and Moves”
chapter for a complete description of how arithmetic expressions are evaluated.

Alphanumeric Subjects

When the condition subject is an alphanumeric field, the following evaluation
rules apply:

1. The object must be either a field or an alphanumeric literal.

2. If necessary, numeric field objects are converted to zoned decimal.

3. The length of the object is adjusted, by truncation or padding, to match the
length of the subject. See the “Assignments and Moves” chapter for more
information on data adjustment.

4. Comparison is logical (bit-by-bit).

Numeric Subjects

When the condition subject is a numeric field, the following evaluation rules
apply:

1. The object must be either a numeric field, a numeric literal, or an arithmetic
expression.

2. Comparison is arithmetic.

Mixed Subjects

When the condition subject is a MIXED field, the following evaluation rules
apply:

1. Only the Equal (EQ =) and Not Equal (NE ¬= NQ) conditions are supported.
The use of any other conditional operators causes an error.

2. The object must be either a field, an alphanumeric literal, a MIXED literal, or
a DBCS literal.

3. A conversion is not performed if the object is an EBCDIC alphanumeric field
or literal.

4. If the object is a MIXED field or literal, the DBCS portion of data is converted
into the DBCS code system of the subject. Also, the shift codes are converted
to the values defined for the DBCS code system of the subject in the DBCS
Options Module.

Decision and Branching Logic 7–5

Field Relational Condition

5. If the object is a DBCS field or literal, the data is converted into the DBCS
code system of the subject. Once converted, the shift codes defined for the
code system of the subject are added to the data.

6. Numeric field objects are converted to zoned decimal (if necessary).

7. To match the length of the subject, the object is truncated or padded.
Padding uses the EBCDIC space character. During truncation, no DBCS
character is split. When truncation occurs within the DBCS portion of a field,
the truncation is adjusted to the nearest double byte boundary.

8. Comparison is logical (bit-by-bit).

DBCS Subjects

When the condition subject is a DBCS field, the following evaluation rules apply:

1. Only the Equal (EQ =) and Not Equal (NE ¬= NQ) conditions are supported.
The use of any other conditional operators causes an error.

2. The object must be either a field, an alphanumeric literal, a MIXED literal, or
a DBCS literal.

3. If the object is an EBCDIC alphanumeric field or literal, then each character
is converted into the DBCS code system of fieldname-1.

4. If the object is a MIXED field or literal, the DBCS portion of data is converted
into the DBCS code system of the subject. The EBCDIC portion of data is
converted to its equivalent DBCS value based on the code system of the
subject. Shift codes are removed.

5. If the object is a DBCS field or literal, the data is converted into the DBCS
code system of the subject.

6. If necessary, numeric field objects are converted to zoned decimal and then
converts the EBCDIC result into the equivalent DBCS characters based on
the code system of fieldname-1.

7. To match the length of the subject, the object is truncated or padded.
Padding uses the DBCS space character.

8. Comparison is logical (bit-by-bit).

7–6 Reference Guide

Field Series Condition

Example

The following exhibit illustrates various field relational conditions:
FILE PERSNL FB(150 1800)
 EMP# 9 5 N
 NAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
 PAY-NET 90 4 P 2
 PAY-GROSS 94 4 P 2
 SEX 127 1 N
TOTAL-EMP# W 3 N VALUE 0
TOTAL-SEX W 3 N VALUE 0
TOTAL-PAY W 3 N VALUE 0
TOTAL-FIRST-NAME W 3 N VALUE 0
MALE W 1 N VALUE 1
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF EMP# GT 10000
 TOTAL-EMP# = TOTAL-EMP# + 1
 END-IF
 IF SEX NE MALE
 TOTAL-SEX = TOTAL-SEX + 1
 END-IF
 IF PAY-NET LT (PAY-GROSS / 2)
 TOTAL-PAY = TOTAL-PAY + 1
 END-IF
 IF NAME-FIRST EQ 'LINDA'
 TOTAL-FIRST-NAME = TOTAL-FIRST-NAME + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-EMP#
 DISPLAY TOTAL-SEX
 DISPLAY TOTAL-PAY
 DISPLAY TOTAL-FIRST-NAME
END-PROC

Field Series Condition
The field series condition compares a field and a series or a range of values. Its
syntax is:
 Relational
 Subject Operator

{IF }
{ELSE-IF } { }
{DO WHILE } field-name-1{EQ = } +
{DO UNTIL } {NE ¬= NQ}
{RETRIEVE...WHILE}

Object

{ [{ }] }
{field-name-2 [THRU{ field-name-3 }]...}
{literal-1 [{ literal-2 }] }

Decision and Branching Logic 7–7

Field Series Condition

Operation

Subject

Fieldname-1 is the subject of the comparison.

Relational Operator

Equal and not equal are the only valid relational operators for field series
conditions.

Object

Code fieldname-2 or a literal-1 as often as you need to indicate the series of
comparison objects. Fieldname-2 through fieldname-3, fieldname-2 through
literal-2, literal-1 through fieldname 3, or literal-1 through literal-2 designate a
value range.

Note: Alphanumeric literals must be enclosed in apostrophes.

Rules for Evaluation

Evaluation rules for field series conditions are as follows:

1. Alphanumeric (including DBCS and MIXED format fields) and numeric
fields are evaluated as in the field relational condition.

2. An equal (=) relational operator tests if the subject is equal to or within range
of any of the series of values comprising the object.

3. A not equal (¬=) relational operator tests if the subject is unequal to or
outside the range of all the series of values comprising the object.

7–8 Reference Guide

Field Class Condition

Example

The following exhibit illustrates the field series condition:
FILE PERSNL FB(150 1800)
REGION 1 1 N
BRANCH 2 2 N
DEPT 98 3 N
MARITAL-STAT 128 1 A
*
TOTAL-REGION W 3 N VALUE 0
TOTAL-BRANCH W 3 N VALUE 0
TOTAL-DEPT W 3 N VALUE 0
TOTAL-MARITAL W 3 N VALUE 0
WORK-REGION W 2 N VALUE 04
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF REGION = 0, 8, 9
 TOTAL-REGION = TOTAL-REGION + 1
 END-IF
 IF BRANCH NE 01, WORK-REGION
 TOTAL-BRANCH = TOTAL-BRANCH + 1
 END-IF
 IF DEPT EQ 940 THRU 950
 TOTAL-DEPT = TOTAL-DEPT + 1
 END-IF
 IF MARITAL-STAT NE 'M', 'S'
 TOTAL-MARITAL = TOTAL-MARITAL + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-REGION
 DISPLAY TOTAL-BRANCH
 DISPLAY TOTAL-DEPT
 DISPLAY TOTAL-MARITAL
END-PROC

Field Class Condition
The field class condition determines if all positions of a field contain alphabetic,
numeric, space, zero, X’FF, or X’00 characters. Its syntax is:

Syntax
 Subject Object
 {ALPHABETIC }
 {BREAK }
 {HIGHEST-BREAK}
 {KANJI }
{IF } {MIXED }
{ELSE-IF } field-name [NOT] {NUMERIC }
{DO WHILE } {SPACE }
{DO UNTIL } {SPACES }
{RETRIEVE ... WHILE} {ZERO }
 {ZEROS }
 {ZEROES }
 {HIGH-VALUES }
 {LOW-VALUES }

Decision and Branching Logic 7–9

Field Class Condition

Operation

Subject

Fieldname is the subject of the comparison. Each byte of the field must pass the
test before the test is true.

Object

The object determines the class of data to be tested for.

The NOT parameter indicates that the condition test is reversed.

Rules for Evaluation

Evaluation rules for field class conditions are as follows:

{ALPHABETIC}

ALPHABETIC tests for the characters A through Z or a blank space in each byte
of the subject field.

{BREAK}

BREAK tests whether this field is currently being processed as a CONTROL
break field on a report. The BREAK test is an alternative to testing the fieldname
LEVEL for a specific numeric value. Fieldname must be defined on a CONTROL
statement or it must be the reserved word FINAL.

{HIGHEST-BREAK}

HIGHEST-BREAK tests whether this field caused the CONTROL break on a
report. The HIGHEST-BREAK test is an alternative to testing the fieldname
BREAK-LEVEL for a specific numeric value. Fieldname must be defined on a
CONTROL statement or it must be the reserved word FINAL.

{KANJI}

KANJI tests for valid DBCS values applicable to the DBCS code system of the
field. The “DBCS Options Module” chapter of the Getting Started defines the
valid values for each DBCS code system.

7–10 Reference Guide

Field Class Condition

{MIXED}

MIXED tests each DBCS character in the field for valid DBCS values applicable
to the DBCS code system of the field. The DBCS data must be identified by the
correct shift codes for the DBCS code system of the field. The “Installing DBCS
Option” appendix of the Getting Started defines the valid values for each DBCS
code system. If the field contains only EBCDIC data, this test always proves to be
correct.

{NUMERIC}

NUMERIC tests for the digits 0 through 9 (in the correct format for the field's
data type), and for a possible algebraic sign in the low-order position of type P
fields or in the high-order position of type N fields.

{SPACE}

SPACE and SPACES test for the character space in each byte of EBCDIC and
MIXED format subjects and each double byte of DBCS subjects. The DBCS code
system of the subject defines the value of the appropriate DBCS space character.

{ZERO}

ZERO, ZEROS, and ZEROES test for the digit 0 (in the correct format for the
field's data type), and for a possible algebraic sign in the low-order position of
type P fields or in the high-order position of type N fields.

{HIGH-VALUES}

HIGH-VALUES tests for the character X'FF' in each byte of EBCDIC and MIXED
format subjects and each double byte of DBCS subjects. The DBCS code system
of the subject defines the value of the appropriate DBCS space character.

{LOW-VALUES}

LOW-VALUES tests for the character X'00' in each byte of EBCDIC and MIXED
format subjects and each double byte of DBCS subjects. The DBCS code system
of the subject defines the value of the appropriate DBCS space character.

Decision and Branching Logic 7–11

Field Class Condition

Example

The following exhibit illustrates the use of the field class condition:
FILE PERSNL FB(150 1800)
REGION 1 1 N
BRANCH 2 2 N
NAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
*
TOTAL-NUMERIC W 3 N VALUE 0
TOTAL-NON-ZEROS W 3 N VALUE 0
TOTAL-ALPHABETIC W 3 N VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF REGION NUMERIC
 TOTAL-NUMERIC = TOTAL-NUMERIC + 1
 END-IF
 IF BRANCH NOT ZERO
 TOTAL-NON-ZEROS = TOTAL-NON-ZEROS + 1
 END-IF
 IF NAME ALPHABETIC
 TOTAL-ALPHABETIC = TOTAL-ALPHABETIC + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY TOTAL-NUMERIC
 DISPLAY TOTAL-NON-ZEROS
 DISPLAY TOTAL-ALPHABETIC
END-PROC

7–12 Reference Guide

Field Bits Condition

Field Bits Condition
The field bits condition compares selected bits of a field for on (1) or off (0)
conditions. Its syntax is:

Syntax
 Relational
 Subject Operator Object

{IF }
{ELSE-IF } { } { }
{DO WHILE } field-name-1 [NOT] { ON} {field-name-2}
{DO UNTIL } {OFF} {literal }
{RETRIEVE...WHILE}

Operation

Subject

Fieldname-1 is the subject of the comparison. It can be any field type.

Relational Operator

The relational operators ON and OFF test for bit values of one or zero
respectively.

The NOT parameter indicates the condition test is reversed.

Object

Fieldname-2 or a literal establish the bits mask to be tested. Only those bits are
tested that correspond to one (1) bits in the mask. The length of the object must
equal the length of the subject. When you code literal as the object, it must be a
hexadecimal literal. Indicate a hexadecimal literal by preceding it with an X.

Decision and Branching Logic 7–13

File Presence Condition

Example

The following exhibit illustrates the use of the field bits condition:
DEFINE FIELD-1 W 1 B VALUE X'20'
DEFINE FIELD-NUM W 4 B VALUE X'FF00FF00'
DEFINE PATTERN-8 W 1 B VALUE X'80'
DEFINE LOWER-CASE W 1 A VALUE X'81'
*
JOB INPUT NULL NAME MYPROG
 IF FIELD-1 ON PATTERN-8
 DISPLAY 'PERFORM CODE FOR PATTERN 8'
 END-IF
 IF LOWER-CASE OFF X'40'
 DISPLAY 'THIS LETTER IS LOWER CASE'
 END-IF
 IF FIELD-NUM ON X'FF000000'
 DISPLAY '1ST BYTE HIGH VALUES'
 END-IF
STOP

File Presence Condition
The file presence condition determines whether a record of the file is currently
available for processing. Its syntax is:

Syntax
 Subject

{IF } { }
{ELSE-IF } [NOT] [EOF] {file-name}
{DO WHILE} {PRIMARY }
{DO UNTIL} {SECONDARY}

Operation

Subject

Filename, PRIMARY, and SECONDARY designate the subject of the test.
PRIMARY and SECONDARY are special names for the first and second files in a
synchronized file input JOB.

7–14 Reference Guide

File Presence Condition

Object

The object of the test is simply the availability of the record for processing.

The optional EOF parameter causes the test to be true when the subject is at
end-of-file or the file is empty. This test can never be true for automatic input
files that are not involved in synchronized file processing.

The optional NOT parameter reverses the condition test. It can also be used if a
file is empty (for example, NOT filename).

The file is available if the last GET or READ operation was successful and there
is a record that can be accessed.

Example

The following exhibit illustrates the use of the file presence condition:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
FILE SORT2 FB(200 3200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
COUNT-2 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE), +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF EOF SECONDARY
 DISPLAY 'EOF ON SECONDARY'
 STOP
 END-IF
 IF NOT PRIMARY
 DISPLAY 'NO PERSONNEL RECORD- ' LOCATION-STATE
 END-IF
 IF NOT SECONDARY
 DISPLAY 'NO INVENTORY RECORD- ' ADDR-STATE
 END-IF
 IF SORT1
* HOW MANY PERSONNEL RECORDS RETURNED
 COUNT-1 = COUNT-1 + 1
 END-IF
 IF SORT2
* HOW MANY INVENT RECORDS RETURNED
 COUNT-2 = COUNT-2 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
 DISPLAY COUNT-2
END-PROC

Decision and Branching Logic 7–15

File Presence Series Condition

File Presence Series Condition
The file presence series condition determines file presence and record matching
for more than one file in JOBs with synchronized file input (See the “File
Processing” chapter). Its syntax is:

Syntax
 Subject

{IF } [file-name]
{ELSE-IF } [NOT] MATCHED [PRIMARY] ...
{DO WHILE} [SECONDARY]
{DO UNTIL}

Operation

Subject

The optional filename, PRIMARY, and SECONDARY parameters identify the
files to be tested. When you do not code this parameter, the condition is true
only if all input files have matching records.

The optional NOT parameter reverses the condition test.

Example

The following exhibit illustrates the use of the file presence series condition:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
FILE SORT2 FB(200 3200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE), +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF MATCHED
 COUNT-1 = COUNT-1 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
END-PROC

7–16 Reference Guide

Record Relational Condition

Record Relational Condition
The record relational condition determines the relationship of the current record
of a file to the previous and next records of the same file. This test is valid only
for synchronized file processing (see the “File Processing” chapter). The
condition syntax is:

Syntax
 Subject

{IF } { } { }
{ELSE-IF } [NOT] {DUPLICATE} {file-name}
{DO WHILE} {FIRST-DUP} {PRIMARY }
{DO UNTIL} {LAST-DUP } {SECONDARY}

Operation
{DUPLICATE}

/DUPLICATE is true when the previous or next record has the same key as the
current record.

{FIRST-DUP}

FIRST-DUP is true for the first of two or more records with the same key.

{LAST-DUP}

LAST-DUP is true for the last of two or more records with the same key.

Subject

The filename, PRIMARY, and SECONDARY parameters identify the file to be
tested.

The optional NOT parameter reverses the condition.

Decision and Branching Logic 7–17

IF, ELSE-IF, ELSE, and END-IF Statements

Example

The following exhibit illustrates the use of the record relational condition:
FILE PERSNL FB(150 1800)
%PERSNL
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
FILE SORT2 FB(200 3200) VIRTUAL
COPY INVENT
COUNT-1 W 3 N VALUE 0
COUNT-2 W 3 N VALUE 0
*
SORT PERSNL TO SORT1 USING (ADDR-STATE) NAME MYSORT1
SORT INVENT TO SORT2 USING (LOCATION-STATE) NAME MYSORT2
*
JOB INPUT (SORT1 KEY (ADDR-STATE) +
 SORT2 KEY (LOCATION-STATE)) +
 NAME MYPROG FINISH FINISH-PROC
 IF DUPLICATE PRIMARY
 COUNT-1 = COUNT-1 + 1
 END-IF
 IF DUPLICATE SORT2
 COUNT-2 = COUNT-2 + 1
 END-IF
*
FINISH-PROC. PROC
 DISPLAY COUNT-1
 DISPLAY COUNT-2
END-PROC

IF, ELSE-IF, ELSE, and END-IF Statements
The IF statement controls the execution of its associated statements. Associated
statements are those that are coded between IF and END-IF. The syntax and
logic of the IF, ELSE-IF, ELSE, and END-IF are:

Syntax
IF conditional-expression-1
[statement-1]

[ELSE-IF conditional-expression-2] [. . .]
[[statement-2]] []

[ELSE]
[[statement-3]]
[]

END-IF

7–18 Reference Guide

IF, ELSE-IF, ELSE, and END-IF Statements

Operation

The truth value of the conditional-expression-1 determines whether statement-1
is executed. Statements designated by statement-1 are executed when
conditional-expression-1 is true. When conditional-expression-1 is false,
conditional-expression-2 is tested if the ELSE-IF is specified.

If ELSE-IF is specified, the truth value of conditional-expression-2 determines
whether statement-2 is executed. Statements designated by statement-2 are
executed when conditional-expression-2 is true. When conditional-expression-2
is false, conditional-expression of the ELSE-IF is tested, if specified. If the last
ELSE-IF's conditional-expression is also false, statements designated by
statement-3 are executed. Nest as many ELSE-IFs within the IF as necessary;
terminate the IF with a single END-IF.

If ELSE-IF is not specified and conditional-expression-1 is false, statements
designated by statement-3 are executed.

If the ELSE statement is not specified and the conditional expression is false, no
statements are executed and control passes to the statement following the
END-IF.

Statement-1, statement-2, and statement-3 each represent any number of
statements. Whenever one or more of these statements is an IF statement, the IFs
are considered to be nested. The format of nested IFs is simply that statement-1,
statement-2, and statement-3 of any IF can be an IF statement.

ELSE-IF

ELSE-IF is optional and identifies a conditional expression to be tested when the
previous conditional expression is false. ELSE-IFs enable multiple conditions to
be nested without requiring an END-IF for each condition. You can code as
many ELSE-IFs as necessary.

Decision and Branching Logic 7–19

IF, ELSE-IF, ELSE, and END-IF Statements

ELSE

ELSE is optional and identifies the statements to be executed when conditions
are false. When the conditions of the preceding IF are not satisfied and ELSE-IF
is not specified, the statements between IF and ELSE are bypassed and execution
continues with the statement following ELSE.

END-IF

END-IF terminates the logic associated with the previous IF statement. An
END-IF statement must be specified after each IF statement and its associated
statements. You must not specify an END-IF for an ELSE-IF.

Example

The next three exhibits illustrate IF statement usage. In each of the illustrated
cases, the field XMAS-BONUS is computed to be either three or five percent over
PAY-GROSS. When the field PAY-GROSS is non-numeric, a warning message is
issued and the record is bypassed from further processing.

Without Nested IFs
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GO TO JOB
 END-IF
 IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS +
 + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

7–20 Reference Guide

IF, ELSE-IF, ELSE, and END-IF Statements

With Nested IFs
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GOTO JOB
 ELSE
 IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

With ELSE-IFs
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 IF PAY-GROSS NOT NUMERIC
 DISPLAY EMP# ' PERSONNEL RECORD IS DAMAGED'
 GOTO JOB
 ELSE-IF PAY-GROSS > 500.00
 XMAS-BONUS = PAY-GROSS * 1.03
 ELSE
 XMAS-BONUS = PAY-GROSS * 1.05
 END-IF
 TOT-XMAS-BONUS = TOT-XMAS-BONUS + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

Decision and Branching Logic 7–21

DO and END-DO Statements

DO and END-DO Statements
The loop control statements DO and END-DO control and delimit repetitive
program logic. Their syntax and logic is:

Syntax
 {WHILE}
DO {UNTIL} conditional-expression
 { }

 statement-1
 ...
 statement-n

END-DO

Operation

The DO statements of DO WHILE and DO UNTIL operate in conjunction with
the END-DO statement.

7–22 Reference Guide

DO and END-DO Statements

DO WHILE and END-DO

The truth value of the conditional expression determines whether statement-1
through statement-n are executed. When the conditional expression is true, the
statements are executed and the program branches back to test the conditional
expression. The program continues to loop for as long as the conditional
expression is true. When the conditional expression is false, the program
branches to the statement following the END-DO.

Statement-1 and statement-n represent any number of statements.

DO UNTIL and END-DO

Statement-1 through statement-n are executed. The truth value of the conditional
expression determines whether the group of statements are executed again.
When the conditional expression is true, the program branches to the statement
following the END-DO. When the conditional expression is false, the program
branches back to execute the statements. The program continues to loop until the
conditional expression is true.

Statement-1 and statement-n represent any number of statements.

Nesting

You can nest DO loops, that is, any of the statements within your loop can be a
DO. The statement must satisfy conditions within inner loops before the
program proceeds to an outer loop.

Decision and Branching Logic 7–23

DO and END-DO Statements

Example

In the exhibit below, each continuous line represents an entire DO loop:

DEFINE COUNT-1 W 3 N VALUE 0
DEFINE COUNT-2 W 3 N VALUE 0
DEFINE RESULT W 3 N VALUE 0
*
JOB INPUT NULL NAME MYPROG
 DO WHILE COUNT-1 LT 10
 COUNT-1 = COUNT-1 + 1
 COUNT-2 = 0
 DO WHILE COUNT-2 < 10
 COUNT-2 = COUNT-2 + 1
 RESULT = COUNT-1 * COUNT-2
 DISPLAY 'COUNT-1= ' COUNT-1 ' COUNT-2= ' COUNT-2 +
 ' RESULT= ' RESULT
 END-DO
 END-DO
STOP

See the “Table and Array Processing” chapter for more examples of loop control
processing.

7–24 Reference Guide

CASE Statement

CASE Statement
The CASE statement conditionally executes one of several groups of statements
based on the value of a specified field. The syntax and logic are:

Syntax
CASE field-name

 WHEN compare-literal-1 [THRU range-literal-1] [...]
 statement-1

 WHEN compare-literal-n [THRU range-literal-n] [...]
 statement-n

 [OTHERWISE]
 [statement-n+1]

END-CASE

Operation
field-name

Fieldname is the subject of the evaluation. The contents of fieldname are
compared to the values represented by literal-1 and literal-2. Fieldname can be a
field of any type but cannot be a varying length alphanumeric field. If fieldname
is alphanumeric, it must be 254 or fewer bytes in length. If fieldname is numeric,
it must have zero or no decimal places.

Decision and Branching Logic 7–25

CASE Statement

WHEN

You specify one or more WHEN conditions. You cannot code any statements
between the CASE and the first WHEN. Each WHEN must supply a unique set
of values to be compared with fieldname.

compare-literal [THRU range-literal] ...

Compare-literal is the value to be compared with fieldname. You can specify a
single literal, a series of literals, or a range of literals. A range is represented by
compare-literal THRU range-literal. A range is satisfied when fieldname is
greater than or equal to lesser of compare-literal and range-literal and is less than
or equal to the greater of compare-literal and range-literal.

When fieldname is alphanumeric, compare-literal and range-literal must also be
alphanumeric and must be equal in length to fieldname. When fieldname is
numeric, compare-literal and range-literal must also be numeric and must not
have any decimal places. Numeric literals must be equal in length to fieldname.

The set of literal values specified for a given WHEN, including the unspecified
values implied by a range, must be unique as compared to the literal values of
any other WHEN for the same CASE.

statement-1
statement-n

Statement-1 and statement-n represent any number of statements executed when
the WHEN comparison is satisfied. Whenever one or more of these statements is
a CASE statement, the CASE statements are considered to be nested.

OTHERWISE

OTHERWISE is an optional statement that specifies a group of statements to be
executed if no WHEN comparison was satisfied. If OTHERWISE is not specified
and fieldname does not equal any of the specified WHENs, execution continues
with the statement following END-CASE.

statement-n+1

Statement-n+1 represents any number of statements executed when no WHEN
comparisons are equal. Whenever one or more of these statements is a CASE
statement, the CASE statements are considered to be nested.

END-CASE

END-CASE terminates the body of the CASE. An END-CASE must be specified
after each CASE and its associated statements.

7–26 Reference Guide

GOTO Statement

Example

The following exhibit illustrates CASE statement usage. In it, the field
XMAS-BONUS is computed to be a certain percent over PAY-GROSS.
FILE PERSNL
NAME-LAST 17 8 A
PAY-GROSS 94 4 P 2
WORK-GROSS W 4 P 0
XMAS-BONUS W 4 P 2 VALUE 0
TOT-XMAS-BONUS W 6 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG FINISH FINISH-PROC
 WORK-GROSS = PAY-GROSS
 CASE WORK-GROSS
 WHEN 0 THRU 1000
 XMAS-BONUS = PAY-GROSS * 1.03
 WHEN 1001 THRU 5000
 XMAS-BONUS = PAY-GROSS * 1.05
 OTHERWISE
 XMAS-BONUS = PAY-GROSS * 1.10
 END-CASE
 TOT-XMAS-BONUS = TOT-XMAS-BONUS + XMAS-BONUS
 PRINT MYREPORT
*
FINISH-PROC. PROC
DISPLAY
DISPLAY 'TOTAL $ SPENT IN BONUS ' +
 'MONEY ====> ' TOT-XMAS-BONUS
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

GOTO Statement
The GOTO statement allows you to modify the natural top to bottom logic flow
of statement execution. Its syntax is:

Syntax
{ } { }
{ GOTO } { label }
{ GO TO } { JOB }

Operation
{label}

GOTO immediately transfers execution control to the first statement following
the associated label. Processing then continues in a top-to-bottom sequence. The
label must be contained in the same activity or procedure. Statement labels are
discussed in detail later in this chapter.

Decision and Branching Logic 7–27

Statement Label

{JOB}

GOTO JOB causes an immediate branch to the top of the current JOB activity.

Example

The following exhibit illustrates the use of GOTO in a program. The arrows
indicate that control is passed to the first executable statement of the activity or
procedure.

Statement Label
Use the statement label with the GOTO statement. When a GOTO is executed,
execution transfers to the first statement following the statement label named on
the GOTO statement. The syntax of a statement label is:

Syntax
 GOTO label
 ...
 ...
label
 ...

7–28 Reference Guide

Statement Label

Operation
label

Label can be up to 40 alphanumeric characters long, can contain any character
other than a delimiter, and begin with A-Z or 0-9; it cannot consist of all numeric
characters.

A statement label is a complete CA-Easytrieve Plus statement that you can code
prior to the following statements:

Assignment Statement Statement Label

CALL STOP

CASE WRITE

CHECKPOINT

DISPLAY

DLI

DO UNTIL

DO WHILE

ELSE-IF

END-DO

END-IF

END-PROC

GET

GOTO

IDMSIF

MOVE

MOVE

LIKE

PERFORM

POINT

PRINT

Decision and Branching Logic 7–29

Statement Label

Assignment Statement Statement Label

PUT

READ

SEARCH

SELECT

SQL

Example

The following exhibit illustrates the use of a statement label with the GOTO
statement:

7–30 Reference Guide

PERFORM Statement

PERFORM Statement
PERFORM transfers control to a procedure and, after the procedure has been
executed, returns control to the next executable statement after the PERFORM
statement. Its syntax is:

Syntax
PERFORM proc-name

Operation
proc-name

Proc-name is the name of the procedure to be executed.

When CA-Easytrieve Plus encounters the PERFORM statement, it immediately
branches to the named routine. After exiting from the procedure, execution
continues with the statement following the PERFORM statement.

Example

The following exhibit illustrates the use of the PERFORM statement in executing
a user procedure:
FILE PERSNL FB(150 1800)
%PERSNL
XMAS-BONUS W 4 P 2 VALUE 0
*
JOB INPUT PERSNL NAME MYPROG
 IF PAY-GROSS < 300.99
 PERFORM SPECIAL-BONUS
 ELSE
 PERFORM STANDARD-BONUS
 END-IF
 PRINT MYREPORT
*
SPECIAL-BONUS. PROC
 XMAS-BONUS = PAY-GROSS * 1.20
END-PROC
*
STANDARD-BONUS. PROC
 XMAS-BONUS = PAY-GROSS * 1.05
END-PROC
*
REPORT MYREPORT
LINE NAME-LAST XMAS-BONUS

See the “Procedure Processing” chapter for more information on processing
procedures using the PERFORM statement.

Decision and Branching Logic 7–31

STOP Statement

STOP Statement
The STOP statement terminates JOB and SORT activities. Activities with
automatic file input automatically terminate when all input records have been
processed. You can terminate activities prematurely, however, with a STOP
statement. You must use STOP to terminate JOB activities without automatic file
input (for example, JOB INPUT NULL). The STOP statement syntax is:

Syntax
STOP [EXECUTE]

Operation
[EXECUTE]

The EXECUTE option immediately terminates all CA-Easytrieve Plus execution.
Spooled data or data in buffers is not printed. The default terminates the current
activity only.

Example

The following exhibit illustrates STOP in a SORT activity to limit the number of
records being sorted. In this example, only the first 50 records from PERSNL are
sorted since the STOP statement simulates end-of-file on PERSNL.
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTOUT FB(150 1800)
COPY PERSNL
*
SORT PERSNL TO SORTOUT +
 USING (PAY-GROSS D) +
 NAME MYSORT BEFORE SORT1-PROC
*
SORT1-PROC. PROC
 IF PERSNL:RECORD-COUNT GT 50
 STOP
 ELSE
 SELECT
 END-IF
END-PROC

Conditional Execution

In the normal flow each activity is executed in top-to-bottom order. Whenever
you want to alter that flow and effectively inhibit activity execution, you can
conditionally execute the STOP statement in JOB START proc-name procedures.

7–32 Reference Guide

STOP Statement

Example

The following exhibit illustrates conditional activity execution:
FILE PERSNL FB(150 1800)
%PERSNL
TOTAL-GROSS W 10 P 2 VALUE 0
JOB-CODE W 4 A VALUE ' '
*
JOB INPUT PERSNL NAME MYPROG1 FINISH FINISH-PROC
 TOTAL-GROSS = TOTAL-GROSS + PAY-GROSS
*
FINISH-PROC. PROC
 IF TOTAL-GROSS > 50000.00
 JOB-CODE = 'JOB2'
 ELSE
 JOB-CODE = 'JOB3'
 END-IF
 DISPLAY 'JOB CODE= ' JOB-CODE
END-PROC
*
JOB INPUT NULL START (START-JOB2) NAME MYPROG3
 DISPLAY 'JOB2 PROCESSING'
 STOP
*
START-JOB2. PROC
 IF JOB-CODE NE 'JOB2'
 STOP
 END-IF
END-PROC
*
JOB INPUT NULL START (START-JOB3) NAME MYPROG4
 DISPLAY 'JOB3 PROCESSING'
 STOP
*
START-JOB3. PROC
 IF JOB-CODE NE 'JOB3'
 STOP
 END-IF
END-PROC

Termination

Under certain circumstances, you might want to completely terminate all
activities.

Decision and Branching Logic 7–33

STOP Statement

Example

The following exhibit illustrates termination of activities:
FILE INVENT FB(200 3200)
%INVMSTR
FILE SORTWRK FB(200 3200)
COPY INVENT
*
JOB INPUT INVENT NAME MYPROG1 FINISH FINISH-PROC
 PRINT MYREPORT
*
FINISH-PROC. PROC
 IF RECORD-COUNT = 0
 DISPLAY 'INPUT FILE NOT AVAILABLE'
 DISPLAY 'HALTING EXECUTION...'
 STOP EXECUTE
 END-IF
END-PROC
*
REPORT MYREPORT
LINE PART-NUMBER PART-DESCRIPTION
*
SORT INVENT TO SORTWRK USING +
 (VENDOR-LOCATION-STATE, +
 VENDOR-LOCATION-CITY) NAME MYSORT
*
JOB INPUT SORTWRK NAME MYPROG2
 PRINT MYREPORT
*
REPORT MYREPORT
LINE PART-NUMBER VENDOR-LOCATION-CITY +
 VENDOR-LOCATION-STATE

7–34 Reference Guide

Chapter

8 Input/Output Specification

This chapter presents the CA-Easytrieve Plus statements used for controlled
input and output processing. These statements are:

■ DISPLAY

■ GET

■ POINT

■ PRINT

■ PUT

■ READ

■ WRITE

These statements cause an input or output action to occur.

STATUS Parameter

The STATUS parameter can be optionally specified on the GET, POINT, and
READ statements for ISAM or VSAM files and also on the PUT and WRITE
statements for VSAM files.

Use the STATUS option whenever the possibility exists for an unsatisfactory
completion of the input/output request. Code STATUS to check the status of the
input/output processing, that is, to see if it was performed properly. Then you
can perform an appropriate action based on that status. STATUS causes the file's
FILE-STATUS field to be set with the return code from the operating system's
data management control program. You can determine the meaning of the
contents of FILE-STATUS by referring to the appropriate IBM manual; however,
normally a 0 or nonzero test is sufficient. If you do not code STATUS and the
operating system returns a nonzero status, an appropriate diagnostic message is
issued.

See the “File Processing” chapter for a more extensive explanation of automatic
and controlled file processing.

Input/Output Specification 8–1

DISPLAY Statement

VSAM FILE-STATUS Codes

FILE-STATUS Value Meaning

0 Operation performed successfully

4 End-of-file during GET operation

8 (a) Duplicate key for a record being output with PUT or
WRITE
(b) Additional records with the same key exist in the
alternate index during a GET operation

12 Keys not in sequence during PUT operation

16 Record not found during READ operation

160 Empty file during GET operation

DISPLAY Statement
DISPLAY formats and transfers data to the system output device or to a named
file. You can code DISPLAY to transfer printed data to the system output device
(SYSPRINT/SYSLST). You can optionally code a filename after DISPLAY to
cause data to be printed to the named file. The DISPLAY syntax has three
formats:

Syntax

Format 1
 []
 [literal-2]
 [] [] [field-name-1]
DISPLAY [file-name-1] [NEWPAGE] [+integer-2] ...
 [SYSPRINT] [SKIP integer-1] [-integer-2]
 [] [CONTROL literal-1] [COL integer-3]
 [] [POS integer-4]
 [#integer-5]
 []

Format 2
 []
 [] [NEWPAGE] {file-name-2}
DISPLAY [file-name-1] [SKIP integer-1] HEX {field-name }
 [SYSPRINT] [CONTROL literal-1] {record-name}
 [] []

8–2 Reference Guide

DISPLAY Statement

Format 3
 []
DISPLAY [file-name-1] [CONTROL literal-3]
 [SYSPRINT]
 []

Parameters

Format 1
[]
[file-name-1]
[SYSPRINT]
[]

When you specify filename-1, data is printed to the named file. If you do not
specify filename-1, the default is SYSPRINT/SYSLST.

Note: The named file (filename-1) should be a PRINTER file or unpredictable
results could occur.

[NEWPAGE]

The NEWPAGE option specifies that a skip to a new page occurs before the data
is printed.

[SKIP integer-1]

The SKIP option specifies that integer-1 number of lines are skipped before the
data is printed. When integer-1 is zero (0), the current line being DISPLAYed
overlays the previous line output to filename-1.

[CONTROL literal-1]

The CONTROL option sets the print carriage control character for the print line.
Valid alphanumeric values for literal-1 are 0 through 9, +, -, A, B, or C (not valid
for use in report procedures). When filename-1 is associated with an extended
reporting printer, the printer must support ANSI or Machine carriage controls.
(See the Extended Reporting Facility Guide for more information about extended
reporting.)

Input/Output Specification 8–3

DISPLAY Statement

[]
[literal-2]
[field-name-1]
[]

Code literal-2 or fieldname-1 in the order you want them to appear on the
printed line. Note that if literal-2 or fieldname-1 contain DBCS format data, the
output device that you code after the DISPLAY keyword must be associated
with an extended reporting printer (see FILE Statement in the “Data Definition”
chapter). This applies to both MIXED and DBCS fields and literals. The entries
are invalid if SYSPRINT or filename-1 are not associated with an extended

nes the DBCS code

 is converted into the

[]
[+integer-2]
[-integer-2]
[]

 does not extend

[COL integer-3]

 does not extend beyond the
end of the line.

When using an extended reporting printer that is not a standard line printer, an
error results if two or more fields and/or literals overlap. (See the Extended
Reporting Facility Guide for more information about extended reporting.)

Note: When coding a DISPLAY statement with POS or COL, be sure to include
the fieldname after the POS or COL option.

For example, Display COL 1 fieldname

[POS integer-4]

The POS integer-4 option on DISPLAY statements within report procedures
causes the next display item to be positioned under the corresponding integer-4
item on the LINE 01 statement.

reporting printer that supports DBCS data.

In addition, the extended reporting Options Module defi
system that the printer supports. Should the code system of any of the
MIXED/DBCS fields or literals coded on the DISPLAY statement not match the
system code of the printer, the DBCS data in the field/literal
code system supported by that printer. Their data format does not change. (See
the Extended Reporting Facility Guide for more information about extended
reporting.)

The space adjustment option +integer-2 or -integer-2 modifies the horizontal
spacing between display items. Integer-2 is any amount that
beyond the end of the line.

The COL integer-3 option specifies the print column number where the next
display item is placed. Integer-3 is any value that

8–4 Reference Guide

DISPLAY Statement

When using an extended reporting printer that is not a standard line printer, an
error results if two or more fields and/or literals overlap. (See the Extended
Reporting Facility Guide for more information about extended reporting.)

Note: When coding a DISPLAY statement with POS or COL, be sure to include
the filename after the POS or COL option.

For example, Display POS 4 fieldname

[#integer-5]

The font index option identifies the font that is used for the next display item.
You can only specify this option if filename-1 has been associated with an
extended reporting printer. Integer-5 identifies the font number of a font defined
for the extended reporting printer assigned to receive the print output. If you do
not code the font index, then the next display item uses the default font for the
assigned extended reporting printer.

If you code space adjustment or COL options before the font index option,
integer-2 or integer-3 refers to horizontal sizes based on the default width of the
assigned extended reporting printer. If you code the font index before either of
these options, then integer-2 or integer-3 refers to horizontal sizes based on the
width of the font identified by integer-5. (See the Extended Reporting Facility Guide
for more information about extended reporting.

Format 2

In Format 2, a hexadecimal and character dump is produced of the current
record of filename-2 or of the specified fieldname. The parameters, other than
HEX, operate the same as in Format 1. For IMS/DLI and CA-IDMS files,
record-name refers to any record (segment), while filename-2 refers to all records
(segments). DISPLAY HEX filename-2 cannot be used in REPORT procedures.

DISPLAY HEX

Unless you specify relative or absolute positioning, the first data entry of each
DISPLAY statement begins in column 1 of the print line. Each data entry that
follows is printed next to a preceding entry. For HEX displays, the output is five
lines per 100 bytes of the record or field.

Input/Output Specification 8–5

DISPLAY Statement

Double Byte Characters

Data entries coded on the DISPLAY statement containing DBCS format data
must be associated with an extended reporting printer that supports DBCS data
via the SYSPRINT parameter or filename-1. You must use the EXTENDED
parameter of the FILE statement to associate the file with an extended reporting
printer. (See the “Data Definition” chapter.) This applies to both MIXED and
DBCS fields and literals. DBCS and MIXED format entries are invalid if
SYSPRINT or filename-1 do not use this option, or if the printer does not support
DBCS data.

If the DBCS Option is active and SYSPRINT or filename-1 support DBCS format
data, then the DISPLAY HEX command produces the five line hexadecimal
display in Double Byte format. The character representation of the contents of
the specified record or field is displayed in the first line of the five-line display.
All EBCDIC characters in the record or field are converted to their Double Byte

irst line of
equivalent. Any DBCS characters in the fieldto the DBCS code system of the
assigned extended reporting printer prior to being formatted onto the f
the display.

EBCDIC and DBCS components in a field are identified through one of two
methods:

1. Examines the manner in which the field was defined in the Data Definition
or Library section (see the “Data Definition” chapter for deta
redefined the field using the fieldname-2 option of the DEFINE statement,
the data format of these redefining fields is used to identify the EBCDIC and
DBCS components. If you do not redefine the field in this ma
is used.

2. Examines all of your program fields that redefine the area occupied by
fieldname-1. The data format of these redefining fields is used to identify the
EBCDIC and DBCS components of fieldname-1. If there are no fields
redefining the same area that fieldname-1 occupies, then the format of
fieldname-1 is used to determine the format of the entire field.

If you code filename or record-name on the DISPLAY HEX statement, all fields
defined for that file or record are used to identify the EBCDIC and DBCS
components of the record. These components are formatted onto the first line of
the hexadecimal display described earlier.

ils). If you

nner, method 2

When you use DISPLAY in report procedures, output is always in the
appropriate place in that report. However, when you use DISPLAY within a JOB
activity, the DISPLAYed output can be interspersed with the first
unSEQUENCED report (see the “Report Processing” chapter).

8–6 Reference Guide

DISPLAY Statement

Format 3

Format 3 pertains to you only if you are using the Extended Reporting Facility.

Some printing systems support print control records that are used to alter the
printing environment. The updated environment, as altered by the print control
record, is used by the printing system to format subsequent output. Use Format
3 to output print control records.

Literal-3 can be an alphanumeric or hexadecimal literal that is output to the print
file without paper control information.

You can only use this format of the DISPLAY statement when filename-1 is
associated with an extended reporting printer. A syntax error is output if the
filename-1 is not an extended reporting printer. See the Extended Reporting
Facility Guide for more information about extended reporting.

Example

The following two exhibits illustrate the use of DISPLAY:
Statements:

FILE BADKEYS FB(150 1800) PRINTER
FILE PERSNL VS
%PERSNL
FILE INKEYS CARD
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ PERSNL KEY WHO
 IF NOT PERSNL
 DISPLAY BADKEYS 'BAD KEY =' +1 WHO
 GOTO JOB
 END-IF
 DISPLAY SKIP 2 HEX PERSNL
END
01963

 CHAR 104 G 01963 7ARNOLD LINDA 1569 COLONIAL TERR ANEW YORK NY10012 @ 911
 ZONE FFF21683FFFFF44FCDDDDC44DCDCC4444444FFFF4CDDDDCCD4ECDD4CDCE4EDDD4444DEFFFFF4444444444444403670450FFF
 NUMR 1048327C019630071956340039541000000015690363659130359901556086920000581001200000000000000058C045C911
 1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75...80...85...90...95..100

 CHAR 082942 21245140401S 1001101968
 ZONE 44FFFFFF44444444FFFFFFFFFFFE444FFFFFFFFFF444444444
 NUMR 00082942000000002124514040120001001101968000000000
 101...5...10...15...20...25...30...35...40...45...50

Input/Output Specification 8–7

GET Statement

GET Statement
GET places the next sequential record of the named file into the file input area.
Its syntax is:

Syntax
GET file-name [STATUS]

Operation
file-name

Filename identifies the input file. If filename is an SQL file, see the SQL Interface
Option Guide .

[STATUS]

For information on the STATUS option, see STATUS Parameter at the beginning
of this chapter. In addition to FILE-STATUS, you can use the following condition
tests:

■ IF EOF filename is true when it is END-OF-FILE or the file is EMPTY.

■ IF NOT filename is true when the file is EMPTY.

Example

The following exhibit illustrates the use of GET:
FILE PERSNL VS
%PERSNL
JOB INPUT NULL NAME MYPROG
 GET PERSNL STATUS
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY PERSNL:FILE-STATUS
 ELSE
 DISPLAY HEX PERSNL
 END-IF
 STOP

See the “File Processing” chapter for more detailed examples on the use of GET
in file processing.

8–8 Reference Guide

POINT Statement

POINT Statement
The POINT statement enables you to establish the position within an ISAM,
VSAM relative record (RRDS), or VSAM indexed (KSDS) file from which
subsequent data is sequentially retrieved. Data in the file become available only
after the next successful sequential retrieval by either automatic file input or a
GET statement. The syntax of the POINT statement is:

Syntax
 {= }
 {EQ} { }
POINT file-name {GE} {field-name} [STATUS]
 {GQ} {literal }
 {>=}

Operation
file-name

Filename must be the same as on a FILE statement that describes an indexed,
keyed, or relative-record file.

{= }
{EQ}
{GE}
{GQ}
{>=}

Equal operators (= and EQ) initiate a file position search based upon an exact
match between the file's keys and the search value. The 'greater than' operators
(GE, GQ, and >=) initiate a file position search based upon a file's key being
equal to or greater than the search value.

{ }
{field-name}
{literal }

The search value can be any valid fieldname or literal.

Note: Alphanumeric (EBCDIC, MIXED, or DBCS) literals must be enclosed
within apostrophes as shown in the exhibit below.

Any DBCS data that fieldname or literal contains is converted into the DBCS
code system of filename. The data format of fieldname or literal is not changed.
The search value must have the same length as the key for the file.

Input/Output Specification 8–9

PRINT Statement

[STATUS]

For information on the STATUS option, see STATUS Parameter at the beginning
of this chapter. In addition to FILE-STATUS, IF EOF filename is true for VSAM
when the search value is greater than the highest key in the file.

[STATUS]

For information on the STATUS option, see STATUS Parameter at the beginning
of this chapter. In addition to FILE-STATUS, you can use the following condition
tests:

■ IF EOF filename is true when the search value is greater than the highest key
in the file or the file is EMPTY.

■ IF NOT filename is true when the file is EMPTY.

Example

The following exhibit illustrates the use of POINT:
FILE PERSNL VS
%PERSNL
JOB INPUT NULL NAME MYPROG
 POINT PERSNL GE '01963' STATUS
 IF FILE-STATUS NE 0 OR EOF PERSNL
 DISPLAY 'BAD POINT...FILE STATUS= ' FILE-STATUS
 STOP
 END-IF
 GET PERSNL STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'BAD GET...FILE STATUS= ' FILE-STATUS
 ELSE
 DISPLAY HEX PERSNL
 END-IF
 STOP

See the “File Processing” chapter for more detailed examples on the use of
POINT in file processing.

PRINT Statement
The PRINT statement requests report output. Issue the PRINT statement to
initiate a printed line. Its syntax is:

Syntax
PRINT [report-name]

8–10 Reference Guide

PRINT Statement

Operation
[report-name]

Report-name is the name of the report as specified on a REPORT statement. If
not given, it is assumed to be the first (un-named) report in the JOB activity.

In general, report output is not written directly to a report's printer file as with
DISPLAY, but is scheduled for deferred formatting and writing to the report's
printer file, perhaps following re-sequencing of an intermediate file.

See the “Report Processing” chapter for detailed examples on the use of PRINT
in report processing.

When you require an intermediate file (referred to as a report work file) for a
report, executing PRINT causes fixed format records (called spool records) to be
output to the work file. The format of these records is determined, but all the
fields required to produce the report are included except those in S-type working
storage. When the report is to contain DBCS format data, all the MIXED/DBCS
fields are converted into the code system defined as the Processing DBCS Code
system.

For more information regarding the Processing code system, see the DBCS
Options Module description in the Getting Started and also the DBCSCODE
keyword of the PARM Statement.

This conversion occurs upon execution of the PRINT statement. Therefore, the
spool record is built so that all of the MIXED/DBCS fields in that spool record
belong to the same DBCS code system: the Processing DBCS Code system.

The exception to this assumption occurs when you specify the FILE option of the
REPORT statement. The DBCS code system assigned to this FILE is the DBCS
code system of the report work file. Upon execution of the PRINT statement the
MIXED/DBCS fields contained on the spool record are convertedd to this DBCS
code system. If the DBCS code system of the report work file is not the same as
the DBCS code system of the extended reporting printer assigned to
report-name, then work file records are converted to the DBCS code system
applicable to report-name as the report is actually printed.

When you do not require a report work file and the report is output to the
printer file immediately, a PRINT statement is executed. The conversion of the
MIXED/DBCS fields still occurs. The conversion is performed before the data is
moved into the print lines.

Input/Output Specification 8–11

PUT Statement

PUT Statement
PUT performs sequential file output. PUT outputs records to SAM, VSAM,
HOSTDISK, and VFM files and also adds consecutive records (mass sequential
insertion) to a VSAM file. The syntax of the PUT statement is:

Syntax
 [{ }]
PUT file-name-1 [FROM {file-name-2}] [STATUS]
 [{record-name}]

Operation
file-name-1

The filename-1 parameter identifies the output file.
[{ }]
[FROM {file-name-2}]
[{record-name}]

The FROM option identifies the file or record from which the current record is
copied onto filename-1. Using this parameter is equivalent to coding a MOVE
statement prior to a PUT statement without the FROM option. When the length
of filename-2 or record-name is less than the length of filename-1, uninitialized
storage can be moved.

The length of the output data is taken from filename-1:RECORD-LENGTH. For
more information about RECORD-LENGTH, see the “File Processing” chapter.

[STATUS]

For information on the STATUS option, see STATUS Parameter at the beginning
of this chapter.

See the “File Processing” chapter for detailed examples of PUT statement usage.

READ Statement
READ provides for random access to keyed and relative-record VSAM and
ISAM files. Its syntax is:

8–12 Reference Guide

READ Statement

Syntax

Input/Output Specification 8–13

END-PROC
END
11710
01895

 { }
READ file-name KEY {field-name} [STATUS]
 {'literal' }

Operation
file-name

The filename parameter identifies the VSAM or ISAM file to be randomly
accessed.

 { }
KEY {field-name}
 {'literal' }

The KEY fieldname parameter provides the key to the desired record. The
contents of fieldname or 'literal' is used in a search for a corresponding record in
the file.

If fieldname contains DBCS data, the DBCS data is converted into the code
system of filename before the READ is performed. The data format is not
changed.

[STATUS]

The STATUS parameter is useful when randomly retrieving records from a
VSAM data set. The exhibit below describes how to test whether a record is
present in the file. For more information on the STATUS option, see the STATUS
parameter description at the beginning of this chapter.

Example
FILE PERSNL VS
%PERSNL
FILE INKEYS CARD
WHO * 5 N
TOTAL-NET W 6 P 2 VALUE 0
JOB INPUT INKEYS NAME MYPROG FINISH DISPLAY-TOTAL
 READ PERSNL KEY WHO STATUS
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY 'UNSUCCESSFUL READ +
 PERFORMED ON FILE PERSNL' +
 +2 'KEY= ' WHO
 ELSE
 TOTAL-NET = TOTAL-NET + PAY-NET
 END-IF
*
DISPLAY-TOTAL. PROC
 DISPLAY 'TOTAL NET SALARY FOR ' +
 WHO ' = ' TOTAL-NET

WRITE Statement

See the “File Processing” chapter for detailed examples of READ statement
usage.

WRITE Statement
WRITE is used in the maintenance of keyed, entry sequenced, and
relative-record VSAM files. During random processing of these files, WRITE
updates and deletes existing records and adds new records. With entry
sequenced files, only UPDATE is permitted. Its syntax has two formats:

Syntax

Format 1
 [] [{ }]
WRITE file-name-1 [UPDATE] [FROM {file-name-2}] [STATUS]
 [ADD] [{record-name}]
 []

Format 2
WRITE file-name-1 DELETE [STATUS]

Format 1

Format 1 of the WRITE statement updates an existing record or adds a new
record to the file. When updating, which is the default, the updated record is the
current active record for the file.

Format 2

Format 2 of the WRITE statement deletes the current active record for the file.

file-name-1

Filename-1 is the name of the keyed or relative record VSAM file to be modified.
You must also have coded the UPDATE subparameter on the FILE statement for
filename-1.

[]
[UPDATE]
[ADD]
[DELETE]
[]

8–14 Reference Guide

UPDATE (default), ADD, or DELETE designates the type of file maintenance
activity to be performed.

WRITE Statement

[{ }]
[FROM {file-name-2}]
[{record-name}]

The FROM filename-2 record-name option identifies an alternate data source for
file UPDATE and ADD operations. Using this parameter is equivalent to coding
a MOVE statement prior to a WRITE statement. The current value of
filename-1:RECORD-LENGTH is the length of the output data.

[STATUS]

For more information on the STATUS option, see STATUS Parameter at the
beginning of this chapter.

Example

The following exhibit illustrates the use of WRITE:
FILE PERSNL VS(UPDATE)
%PERSNL
JOB INPUT NULL NAME MYPROG
 READ PERSNL KEY '05807' STATUS
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ', PERSNL:FILE-STATUS
 DISPLAY 'UNSUCCESSFUL READ ON PERSNL FILE'
 ELSE
 DISPLAY HEX PERSNL
 MOVE '3125059599' TO TELEPHONE
 WRITE PERSNL UPDATE
 IF PERSNL:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ', PERSNL:FILE-STATUS
 DISPLAY 'UNSUCCESSFUL UPDATE ON PERSNL FILE'
 END-IF
 END-IF
 STOP

See the “File Processing” chapter for more detailed examples on the use of
WRITE in file processing.

Input/Output Specification 8–15

Chapter

9 Procedure Processing

CA-Easytrieve Plus provides all of the functions necessary to perform basic
input/output, data examination, and data manipulation. However, there can be
occasions when you want to incorporate your own routines into the main
program. You can do this through the use of procedures.

This chapter describes procedures and shows you how to invoke them in your
program using:

■ PERFORM statement

■ START and FINISH parameters of the JOB statement

■ BEFORE parameter of the SORT statement

■ Special-name procedures at the end of a REPORT activity.

This chapter also discusses placement of procedures within your program.

Procedure Syntax
A procedure is a group of user-written CA-Easytrieve Plus statements designed
to accomplish a particular objective. Procedures are identified with the PROC
and END-PROC keywords. The syntax of a procedure has two formats as
illustrated in the exhibit below:

Procedure Processing 9–1

Procedure Syntax

Syntax

Format 1
proc-name. PROC
 statement-1
 ...
 statement-n
END-PROC

Format 2
proc-name
PROC
 statement-1
 ...
 statement-n
END-PROC

Operation

proc-name

Proc-name identifies the procedure. The name can be from 1 to 40 characters
long, can contain any character other than a delimiter, and begin with A-Z or 0-9;
it cannot consist of all numeric characters. Proc-name must be followed by the
keyword PROC as a separate statement (see the exhibit above).

statement-1...n

Statement-1 through statement-n are the statements that accomplish your
procedure's task. In most cases, you can code any statements within a procedure.
However, you cannot code certain input/output statements (for example, GET,
PUT) in procedures invoked during SORT or REPORT processing.

PERFORM statements within a procedure can invoke other procedures; this is
called procedure nesting. However, recursion is not permitted. That is,
procedure A can invoke procedure B, but procedure B cannot then invoke
procedure A.

END-PROC

END-PROC delimits the statements contained in the procedure.

9–2 Reference Guide

Invoking Procedures

Invoking Procedures
You can invoke procedures at specific points during the execution of your
program. When a procedure is invoked, the statements within the procedure are
executed until control passes to an END-PROC statement. At that time, control is
returned to the point in your program where you invoked the procedure.

You can invoke a procedure by:

■ Coding PERFORM in the statements following a JOB statement or in the
statements within any procedure.

■ Specifying proc-names with the START and FINISH parameters of a JOB
statement.

■ Specifying a proc-name with the BEFORE parameter of a SORT statement.

■ Coding special-name procedures at the end of a REPORT activity.

Note: You cannot invoke other procedures from special-name procedures.

PERFORM Statement
The PERFORM statement transfers control to a procedure. After the procedure is
executed, control returns to the next executable statement following the
PERFORM. The syntax is:

Syntax
PERFORM proc-name

See PERFORM Statement in the “Decision and Branching Logic” chapter for a
detailed explanation and examples of using PERFORM to invoke procedures.

START and FINISH Parameters (JOB)
START proc-name-1 and FINISH proc-name-2 are optional parameters of the
JOB statement that incorporate procedures into their processing activities.

START

Procedure Processing 9–3

START identifies a procedure to be executed during the initiation of a JOB
activity. the procedure coded in proc-name-1 is performed before it retrieves the
first automatic input record.

BEFORE Parameter (SORT)

FINISH

FINISH identifies a procedure to be executed during the termination of a JOB
activity. After the last automatic input record is processed, the procedure
identified by proc-name-2 is performed.

See JOB Statement in the “Processing Activities” chapter for detailed examples
on how to invoke a procedure with the START and FINISH parameters of the
JOB statement.

BEFORE Parameter (SORT)

BEFORE proc-name

Sometimes you want to sort only certain records and/or change their format. To
do this, you must write a sort procedure that immediately follows the SORT
statement.

The optional BEFORE parameter of the SORT statement identifies a procedure
that screens, modifies, or selects records for the sort. Proc-name indicates the
PROC statement that identifies your SORT procedure.

See SORT Statement in the “Processing Activities” chapter for detailed examples
on the use of the BEFORE parameter to invoke a sort procedure.

Special-name Report Procedures
Certain special-name procedures are automatically invoked as they occur within
REPORT processing. These are:
REPORT-INPUT
BEFORE-LINE
AFTER-LINE
BEFORE-BREAK
AFTER-BREAK
ENDPAGE
TERMINATION

See the Report Procedures section in the “Report Processing” chapter for more
information on coding and invoking procedures with REPORT processing.

9–4 Reference Guide

Procedure Placement

Procedure Placement

Procedure Processing 9–5

*
FINISH-PROC. PROC
 PRINT MYREPORT1
END-PROC

You must code procedures immediately after their associated activity (JOB or
SORT) or subactivity (REPORT), as illustrated in the exhibit below:
JOB
 JOB statements
 ...
 START proc-name-1
 ...
 FINISH proc-name-2
 ...
 procedures PERFORMed by the above
 procedures and statements

REPORT
 REPORT declarative statements
 ...
 special-name procedures

SORT
 BEFORE proc-name
 ...
 procedures PERFORMed by the BEFORE proc

Example

The exhibit below illustrates the use and placement of procedures within a
program:
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORT1 FB(150 1800) VIRTUAL
COPY PERSNL
TOTAL-COMPANY-SALARY-WOMEN W 6 P 2
TOTAL-COMPANY-SALARY-MEN W 6 P 2
*
SORT PERSNL TO SORT1 USING (NAME-LAST) +
 NAME MYSORT1 BEFORE SCREENER
*
SCREENER. PROC
 IF SEX = 1 OR SEX = 2
 SELECT
 END-IF
END-PROC
*
JOB INPUT (SORT1) NAME MYPROG +
 START (START-PROC) FINISH (FINISH-PROC)
*
 PERFORM CALC-AND-PRINT
*
START-PROC. PROC
 MOVE ZEROS TO TOTAL-COMPANY-SALARY-WOMEN +
 TOTAL-COMPANY-SALARY-MEN
END-PROC

Procedure Placement

*
CALC-AND-PRINT. PROC
 IF SEX = 1
 TOTAL-COMPANY-SALARY-WOMEN = +
 TOTAL-COMPANY-SALARY-WOMEN + PAY-GROSS
 PRINT MYREPORT2
 END-IF
 IF SEX = 2
 TOTAL-COMPANY-SALARY-MEN = +
 TOTAL-COMPANY-SALARY-MEN + PAY-GROSS
 PRINT MYREPORT3
 END-IF
END-PROC
*
REPORT MYREPORT1
LINE TOTAL-COMPANY-SALARY-WOMEN TOTAL-COMPANY-SALARY-MEN
*
REPORT MYREPORT2
LINE NAME-LAST NAME-FIRST PAY-GROSS
*
ENDPAGE. PROC
 DISPLAY SKIP 2 'TOTAL = ' TOTAL-COMPANY-SALARY-WOMEN
END-PROC
*
REPORT MYREPORT3
LINE NAME-LAST NAME-FIRST PAY-GROSS
*
ENDPAGE. PROC
 DISPLAY SKIP 2 'TOTAL = ' TOTAL-COMPANY-SALARY-MEN
END-PROC

9–6 Reference Guide

Chapter

10 Report Processing

A major function of many programs is to produce printed reports. The
non-procedural nature of CA-Easytrieve Plus report syntax is readily adaptable
to the production of basic and extremely complex reports, both with minimum
programming effort.

Two statements generate printed output:

■ The PRINT statement initiates the basic declarative report facility.

■ The DISPLAY statement produces single print lines on print files.

PRINT is the preferred method because of its many automatic facilities. This
chapter, therefore, discusses report processing using the PRINT statement. For a
complete discussion of the DISPLAY statement, see the “Input/Output
Specification” chapter.

Report Processing 10–1

Basic Report Structure

Basic Report Structure
The CA-Easytrieve Plus report facility is basically declarative; you only need to
define the format and content of the report and the necessary instructions are
created to produce the report. The following example illustrates the basic
structure of a job with report processing; you can define one or more reports for
each activity.

PRINT Statement Processing

The PRINT statement activates the report logic defined by REPORT declarations.
The data required for the requested report is extracted, formatted in the specified
manner, and output to the printer.

The immediate result of a PRINT statement is either one of the following:

■ Data output to a print file.

■ Data output to a work file.

10–2 Reference Guide

Basic Report Structure

Work file records are automatically created when:

Report Processing 10–3

■ The report is SEQUENCEd.

■ Another report is already using the associated print file (this happens when
you have multiple reports in a single JOB activity).

PRINT Workfile Processing

The termination process of each JOB activity, illustrated in the following
example, includes the processing of any print work files created during the JOB
activity.

Basic Report Structure

Report Formats

There are two basic report formats:

■ Standard Format, called a report (see the following example).

■ Label Format, called a label report (see the following example).

Standard Format

The default report format is the standard format illustrated in the following
example:

Top Margin

The top margin is the space between the physical top of the form and the point to
which the printer positions when a top-of-form order is issued to the printer. The
size of the top margin is controlled by the printer carriage tape or forms control
buffer.

Title Area

The optional title area consists of 1 to 99 title lines plus a title margin between the
last title line and the first heading line.

10–4 Reference Guide

Basic Report Structure

Heading Area

Report Processing 10–5

Reporting Facility Guide.

The optional heading area consists of 1 to 99 heading lines plus a heading
margin between the last heading line and the report body.

Report Body

The report body consists of one or more line groups. Each line group is 1 to 99
lines plus, optionally, one or more blank lines between line groups.

Bottom Margin

The bottom margin is the area remaining between the bottom of the report body
and the physical bottom of the page.

Label Format

The second report format is used to print labels. The following example
illustrates the basic label report page format:

A label line consists of one or more labels positioned across the label page. In the
previous example, labels one through four compose a label line. A single line
group composes each label. Therefore, a label is produced for each PRINT
statement execution. The labels are formatted on the page in the order illustrated
in the previous example. DOWN and SIZE indicate the dimensions of each label.

DBCS Reporting Restrictions

DBCS format data in a report definition is supported if the report is directed to a
CA-Easytrieve Plus printer file associated with an extended reporting option
printer. For more details on this option, see the CA-Easytrieve Plus Extended

Basic Report Structure

The extended reporting printer that has been associated with the printer file to
which the report is being directed must also support DBCS output. This support
is indicated in the Extended Printer Options Module.

If the printer does not support a Double Byte Character Set, any MIXED or DBCS
type fields or literals that you code on output-producing statements in the report
(for example, TITLE, HEADING, and LINE statements) cannot be processed
correctly.

This also applies to EBCDIC fields that have the DBCS mask option defined for
them. This does not apply to those MIXED or DBCS fields that have the mask
option of HEX.

These fields are output as a hexadecimal EBCDIC character string and therefore
do not fall into the category of normal DBCS fields.

These restrictions apply to all printer files. If the report uses the system output
file (SYSPRINT/SYSLST) then you must associate that file with an extended
reporting type printer that supports DBCS data.

If the report is directed to another printer file (with the PRINTER option on the
REPORT statement) then you must associate that file with an extended reporting
type file.

Report Definition Statements

Code a report definition by defining a REPORT statement followed by a series of
Report Declaratives that define the content of the report.

10–6 Reference Guide

REPORT Statement

Structure of Report Definition

A set of report definition statements defines every report. The statements define
the report type, format, sequence, and data content. Report definition statements
are the last statements coded in a JOB activity. These statements must be coded
in the order illustrated in the following example. You can code report procedures
in any order and can define any number of reports for each JOB activity.
 ...
 JOB ...
 ...
 PRINT ...
 ...
 REPORT
 SEQUENCE
REPORT CONTROL
DEFINITION SUM
STATEMENTS TITLE {REPORT-INPUT
 HEADING {BEFORE-LINE
 LINE {AFTER-LINE
 special-name procedures {BEFORE-BREAK
 {AFTER-BREAK
 {ENDPAGE
 {TERMINATION

REPORT Statement
Code the REPORT statement first in a report declaration. This statement
establishes the type and characteristics of the report. Although you can specify a
large number of REPORT statement parameters, most reports are produced by
using default parameter values. REPORT statement parameters provide a simple
way to define tailored reports. The “Options Table” appendix contains a list of
default parameter values.

REPORT statement parameters fall into five basic groups:

■ Format determination parameters

■ File directing parameters

■ Spacing control parameters

■ Testing aid parameters

■ IMS – only parameters.

Report Processing 10–7

REPORT Statement

Syntax

The syntax of the REPORT statement folows:
REPORT [report-name] + }
 }
 [SUMMARY] + }
 [SUMFILE file-name-1] + }
 [SUMSPACE literal-1] + }
 [TALLYSIZE literal-2] + }
 }
 [{EVERY}] } format
 [DTLCTL {FIRST}] + } determination
 [{NONE }] } parameters
 }
 [{ [][] }] }
 [{ [ALL][] }] }
 [SUMCTL {([HIAR][DTLCOPY])}] + }
 [{ [NONE][DTLCOPYALL] }] }
 [{ [TAG][] }] }
 [{ [][] }] }

 [LABELS ([ACROSS literal-3] +
 [DOWN literal-4][SIZE literal-5][NEWPAGE])] +
 }
 [FILE file-name-2] + } file directing
 [PRINTER file-name-3] + } parameters

 [PAGESIZE ({literal-6a} [literal-6b])] + }
 [LINESIZE literal-7] + }
 [SKIP literal-8] + }
 [SPACE literal-9] + }
 [TITLESKIP literal-10] + }
 [CONTROLSKIP literal-11] + }
 }
 [] }
 [SPREAD] + } spacing control
 [NOSPREAD] } parameters
 [] }
 }
 [NOADJUST] + }
 [NODATE/NOKDATE/LONGDATE/SHORTDATE] + }
 [NOPAGE/NOKPAGE] + }
 [NOHEADING] + }

 }
 [LIMIT literal-12] + } testing aid
 [EVERY literal-13] + } parameters

 }
 [CHECKPOINT (literal-14 [USING (field-name ...)])] } IMS-only parameter

 }

10–8 Reference Guide

REPORT Statement

REPORT Statement Parameters

Format Determination Parameters

[report-name]

The report-name parameter identifies the report. It is optional when there is only
one report in a JOB. With multiple reports, the first report can remain unnamed
but all others must be named. The report-name must be unique in each JOB and
that report-name must be coded on at least one PRINT report-name statement.
For unnamed reports, code the PRINT statement without a report-name
parameter.

Report-name can be up to 40 characters long, can contain any character other
than a delimiter, and can begin with A-Z or 0-9; it cannot consist of all numeric
characters.

[SUMMARY]

On control reports, the SUMMARY option inhibits printing of detail data. Only
control totals are printed. You cannot use the SUMMARY option in conjunction
with the LABELS option.

[SUMFILE file-name-1]

The optional SUMFILE parameter generates a summary file. Filename-1
identifies the file that contains the data. The following files are illegal for use as
summary files: DLI, IDMS, ISAM, SQL, and files used as input or output files in
the job activity. For more information, see the CONTROL Reports section later in
this chapter.

You can create a VSAM ESDS, KSDS, or RRDS SUMFILE. Be certain that the
SUMFILE produced is compatible with your VSAM file attributes. SUMFILE
records are PUT to a VSAM file. PUT adds consecutive records (mass sequential
insertion) to a VSAM SUMFILE. For an ESDS SUMFILE, records are appended to
the end of the file. For a KSDS SUMFILE, you must ensure that no SUMFILE
record has a key duplicating an existing record's key. Also, you must produce
SUMFILE records in ascending key order. Keep in mind that a VSAM KSDS file
has a maximum key length of 255 bytes. For an RRDS SUMFILE, slots are filled
sequentially, starting with slot 1. You must ensure that all required slots are
available.

Report Processing 10–9

REPORT Statement

[SUMSPACE literal-1]

10–10 Reference Guide

on total lines. That is, only values for control fields on the same hierarchical
level, or higher than the breaking control field, are printed on the associated
total line.

The SUMSPACE option establishes the print size for total fields on a control
report. Literal-1 is added to the length (in digits) of the field to establish its print
size. This expansion is necessary to prevent the loss of significant data due to
overflow conditions. The resulting print length is limited to a maximum of 18
digits. Valid values for literal-1 are 0 through 9. No additional numeric edit
characters are included in the resulting edit mask. For example, totals such as
55555,555.55 can appear.

[TALLYSIZE literal-2]

The TALLYSIZE option sets the print size for the field TALLY. Valid values for
literal-2 are 1 through 18. The actual number of digits used for TALLY on a
summary line are the summed value of TALLYSIZE and SUMSPACE.

[]
[DTLCTL]
[SUMCTL]
[]

Optional parameters, DTLCTL and SUMCTL, establish the method for printing
control field values on control reports. DTLCTL establishes detail line printing
characteristics and SUMCTL establishes total line printing characteristics.

[DTLCTL]

Valid subparameters for DTLCTL are EVERY, FIRST, and NONE.
{EVERY}

EVERY specifies that the value of all control fields is printed on every detail line.
{FIRST}

FIRST specifies that the value of all control fields is printed on the first detail line
of a page and on the first detail line after each control break. Control field values
are not printed on all other detail lines.
{NONE}

NONE inhibits printing of control field values on detail lines.

[SUMCTL]

Valid subparameters for SUMCTL are ALL, HIAR, NONE, TAG, DTLCOPY.

[ALL]—ALL causes control field values to be printed on every total line.

[HIAR]—HIAR causes control field values to be printed in a hierarchical fashion

REPORT Statement

[NONE]—NONE inhibits printing of control field values on total lines.

[TAG]—TAG causes control-fieldname TOTAL to be printed as annotation to
the left of the associated total line where control-fieldname is the fieldname
for the breaking control field. There must be sufficient unused space on the
left side of the total line for this annotation.

[DTLCOPY]—The DTLCOPY subparameter causes detail information to be
printed on total lines. Normally, only control field values and associated
totals are printed on total lines. Coding this subparameter causes the detail
field contents, prior to the break, to be printed on the total line. These fields
are printed only when LEVEL is one (1).

[DTLCOPYALL]—The DTLCOPYALL subparameter operates the same as the
DTLCOPY subparameter except that the fields are printed for all control
breaks.

[LABELS]

The LABELS option specifies that the report is a label report. The NOHEADING
and NOADJUST options are automatically activated when the LABELS option is
specified; therefore you cannot specify TITLE and HEADING statements. The
subparameters ACROSS, DOWN, SIZE, and NEWPAGE control the spacing of
label reports. You cannot use the LABELS option in conjunction with the
SUMMARY option.

[ACROSS literal-3]—The ACROSS subparameter specifies the number of labels
printed across the print line. Literal-3 is the number of labels printed
side-by-side.

[DOWN literal-4]—The DOWN subparameter specifies the number of lines in a
label. The value of literal-4 is the number of lines reserved for each label. The
value range for literal-4 is 1 through 'nn', where 'nn' is at least as large as the
largest corresponding 'LINE nn' value.

[SIZE literal-5]—The SIZE subparameter sets the length of each label. The value
of literal-5 is the number of print positions on a label. Literal-5 has a value
range from 1 to 'nnn', where 'nnn' is the length of the label.

If you direct the report to an extended reporting printer, literal-5 is multipled by
the default width defined for the assigned extended reporting printer. This
result determines the width of each label. (See the Extended Reporting Facility
Guide for more information about extended reporting.)

[NEWPAGE]—The NEWPAGE subparameter controls the printing of the first
line (LINE 01) of each label. When coded, NEWPAGE associates a printer
top-of-form request with the first line of each label.

The following algorithm constrains the overall size of labels:

Report Processing 10–11

LINESIZE >= (ACROSS - 1) * SIZE + (actual number of bytes printed
 on the last label)

REPORT Statement

File Directing Parameters

10–12 Reference Guide

■

In other words, at least one line group must fit on a report page.

[FILE file-name-2]

The optional FILE parameter identifies the work file used for very large reports.
Code this parameter when the default VFM work file is too small to contain the
report data. Filename-2 identifies the FILE that receives the work file data. The
following filetypes are illegal for use as FILE parameter work files: DLI, IDMS,
ISAM, SQL, HOSTDISK, and files being used in the JOB activity.

[PRINTER file-name-3]

The optional PRINTER parameter directs the report's printed output. Filename-3
identifies the FILE that receives the report. This file must have the PRINTER
attribute specified. The default is the standard print output file: SYSPRINT for
OS/390 and z/OS, SYSLST for VSE.

If the system print output file or filename-3 has been associated with an
extended reporting printer, then the report is automatically formatted to satisfy
the requirements defined for that extended reporting printer. The support of
extended reporting facilities is restricted to those reports that are output to
printer files that have been associated with an extended reporting printer. (See
the Extended Reporting Facility Guide for more information about extended
reporting.)

Spacing Control Parameters

Each of the following parameters modifies the default spacing of a report page.
You normally do not use these parameters; however, they are available to
support unique report spacing requirements.

[PAGESIZE]

The PAGESIZE option establishes the length of each printed page. Literal-6a
specifies the page length for LINE statements. Literal-6b specifies the page length
for REPORT procedure DISPLAY statements.

{literal-6a}—The value of literal-6a sets the number of lines per page. Literal-6a
has a valid range of 1 to 'nnn', where 'nnn' is at least as large as the sum of:

■ 'nnn' of the last 'TITLE nnn'

■ Literal-10 of TITLESKIP

■ Number of HEADING lines plus one

■ 'nnn' of the last 'LINE nnn'

 Literal-8 of SKIP.

REPORT Statement

If the report is directed to an extended reporting printer, and that printer does

Report Processing 10–13

ASA carriage control information.

not support a Forms Control Block (FCB), then the PAGESIZE value is
multiplied by the default height of the assigned extended reporting printer. This
permits the comparison of PAGESIZE with the heights of fonts used on the
report. The value of literal-6 multiplied by the default height of the assigned
extended reporting printer cannot exceed the maximum page length of that
extended reporting printer. (See the Extended Reporting Facility Guide for more
information about extended reporting.)

[literal-6b]—The value of literal-6b, the display-page-size, sets the number of
lines per page for REPORT procedure DISPLAY statements. Literal-6b has a
valid range from 0 to 32767. If literal-6b is zero, then a DISPLAY statement
considers the report page infinite in size and never attempts to determine the
end-of-page condition. That is, a DISPLAY statement does not compare
literal-6b to the current line count.

However, if literal-6b is greater than zero, then a DISPLAY statement does
compare the current line count to literal-6b. But only if the DISPLAY statement is
in a REPORT-INPUT, BEFORE-LINE, AFTER-LINE, BEFORE-BREAK, or
AFTER-BREAK report procedure. A DISPLAY statement in an ENDPAGE or a
TERMINATION report procedure never attempts to determine the end-of-page
condition, even when literal-6b is greater than zero.

A DISPLAY statement that determines the end-of-page condition, performs three
actions:

1. It determines the end-of-page condition, by comparing the current line count
to literal-6b, display-page-size.

2. If end-of-page is detected, then DISPLAY performs ENDPAGE and produces
TITLEs and HEADINGs.

3. The DISPLAY formats and prints its own data.

If the current line count is greater than literal-6b, then the DISPLAY turns on the
'TITLEs requested' indicator, it does not print the TITLEs now. The actual
printing of the TITLEs is left to the next LINE statement or the next DISPLAY
statement that determines the end-of-page condition.

If literal-6b is not given, then the REPORT statement retrieves its value from the
Options Table.

[LINESIZE literal-7]

The LINESIZE option determines the length of each line on a page. Literal-7 is
the number of print positions on each report line. The value of literal-7 must be 1
to 'nnn', where 'nnn' is one less than the physical length (record size) of the
printer file receiving the report. The first character in a PRINTER file contains the

REPORT Statement

If the report is assigned to an extended reporting printer that is not a standard
Line Printer, the maximum value of LINESIZE is not dependent upon the record
size of the print data set. The insertion of Overprint and Function Codes into
print records plus the support of different fonts on the same print line all impact
the relationship between LINESIZE and the print data set record size. Any
LINESIZE is supported, provided literal-7 multiplied by the value of the
assigned extended reporting printer's default width does not exceed the
maximum page width of that extended reporting printer.

[SKIP literal-8]

[SPACE literal-9]

The SPACE option adjusts the default number of blanks (space characters)
inserted between fields on TITLE and LINE statement items. The value of
literal-9 has a valid range of 0 to 'nnn' (default is 3), where 'nnn' does not cause
line overflow. The SPREAD option overrides this parameter.

If the report is directed to an extended reporting printer, the SPACE factor is
multiplied by the default width of the assigned extended reporting printer. (See
the Extended Reporting Facility Guide for more information about extended
reporting.)

[TITLESKIP literal-10]

The TITLESKIP option inserts blank lines between the last title line and the first
heading line (or LINE 01) of a report. The value of literal-10 has a valid range of
0 to 'nnn', where 'nnn' allows for the printing of at least one line group on each
page.

Literal-7 overrides the value defined in the Options Module. If the report is
directed to an extended reporting printer, the LINESIZE value is multiplied by
the default width of the assigned extended reporting printer. This value defines
the width of the print line. (See the Extended Reporting Facility Guide for more
information about extended reporting.)

The SKIP option determines the number of blank lines to be inserted between
line groups (between the last 'LINE nnn' and the next LINE 01). Literal-8 has a
valid range of 0 to 'nnn', where 'nnn' allows for the printing of at least one line
group on each page. When you specify a value of 0, a line group containing
multiple lines can be spanned across a page break. A non-zero value inhibits this
spanning.

If the report is directed to an extended reporting printer that does not support a
Forms Control Block (FCB), the default height of the assigned extended
reporting printer defines the height of each line. (See the Extended Reporting
Facility Guide for more information about extended reporting.)

10–14 Reference Guide

REPORT Statement

If the report is directed to an extended reporting printer that does not support a
Forms Control Block (FCB), the height of each line is defined by the default
height of the assigned extended reporting printer. (See the Extended Reporting
Facility Guide for more information about extended reporting.)

[CONTROLSKIP literal-11]

er of blank lines to be inserted
e next detail line. Literal-11 must be

bet t specified, one blank line plus the
otal line.

[]
[SPREAD]
[NOSPREAD]
[]

ximum number of spaces be inserted
between each column of a report. SPREAD overrides the SPACE parameter.
NOSPREAD deactivates the SPREAD option when it is the default. SPREAD and
NOADJUST are mutually exclusive. See the SPREAD Option

Specify CONTROLSKIP to define the numb
following CONTROL total lines and th

ween 0 and 32767. If CONTROLSKIP is no
SKIP value is inserted after the CONTROL t

The SPREAD option requests that the ma

, later in this
chapter, for more information and examples of this parameter.

[NOADJUST]

The NOADJUST option requests that the title lines and report be left-justified on
the page. The default is for the report to be centered on the page. SPREAD and
NOADJUST are mutually exclusive.

The parameters NODATE, NOKDATE, NOPAGE, LONGDATE, SHORTDATE,
NOKPAGE and NOHEADING modify the information normally printed on the
first TITLE line at the top of each report page.

[NODATE/NOKDATE/LONGDATE/SHORTDATE]

The NODATE option inhibits the printing of the SYSDATE value on the first title
line (TITLE 01).

Normally, when a report is being generated for an extended reporting printer
that supports DBCS data, the KANJI-DATE value is placed in positions one
through 18 of the first title line (TITLE 01). You can inhibit this by coding the
keyword NOKDATE on the REPORT statement.

When you use the NOKDATE option or the report is being generated for a
printer that does not support DBCS data, the SYSDATE value is placed in
position one through eight of the first title line.

The LONGDATE option displays SYSDATE-LONG on the first title line.

Report Processing 10–15

REPORT Statement

The SHORTDATE option displays SYSDATE on the first title line.

If LONGDATE or SHORTDATE is not specified, the date to be displayed is
determined from the Options Table.

The NOPAGE option inhibits the printing of the PAGEWRD opti
current page number in the report title.

Normally, when a report is being generated for an extended reporting printer
that supports DBCS data, the Kanji page number is printed at
title line. The Kanji page number consists of the current page count followed by
the Kanji character for page. The current page number is converted i
appropriate DBCS value. This DBCS value is then combined with the Kanji page
character and printed at the end of the first title line (TITLE 01)
this by coding the keyword NOKPAGE on the REPORT statement.

When you use the NOKPAGE option or the report is being generated for a
printer that does not support DBCS data, the value of the PAGEWR
the current page number are printed at the end of the first title lin

[NOPAGE/NOKPAGE]

on and the

 the end of the first

nto the

. You can inhibit

D option and
e (TITLE 01).

[NOHEADING]

The NOHEADING option inhibits the printing of column headings. Normally,
each field's HEADING value is printed as a column heading.

Testing Aid Parameters

The LIMIT and EVERY options are available as a testing aid for report
development. These parameters control the amount of data output on a report.

[LIMIT literal-12]

The LIMIT option limits the number of records processed by the report. The
value of literal-12 has a valid range of 1 to 32,767.

[EVERY literal-13]

The EVERY option specifies that only every Nth line is printed in the report. The
value of literal-13 has a valid range of 1 to 32,767.

IMS-only Parameter

[CHECKPOINT (literal-14 [USING (field-name...)])]

CHECKPOINT is an IMS-only parameter for use with the extended
Checkpoint/Restart Facility. For details see the IMS/DLI Interface Option Guide.

10–16 Reference Guide

Report Definition Statements

DBCS/MIXED Considerations

When a report cannot be printed directly as the PRINT statements are processed,
a report work file is built. Each record of the work file contains all the data
required to produce the report at a later point in the CA-Easytrieve Plus

are specified as part of the report, it

you do not code the FILE option of the
e report work file is the processing

CS code system, see the DBCS Options
e DBCSCODE keyword of

processing cycle. When MIXED/DBCS fields
can be necessary to convert from one DBCS code system to another. The
following situations define the conversion processing that is performed.

When you require a report work file and
REPORT statement, the code system of th
DBCS code system. The conversion is performed when the report work file
record is built (that is as part of the PRINT statement operation). For more
information regarding the Processing DB
Module description in the Getting Started and also th
the PARM Statement.

When you require a report work file an
REPORT statement, the code system of th
with the filename specified to receive the report work file records. When the
record is built, any MIXED/DBCS fields th
addition, when the report work file is then input fo
MIXED/DBCS fields from the DBCS code

d you have coded the FILE option of the
e report work file is that associated

at must be converted are processed. In
r report printing, all the

system of the report work file are
converted to the DBCS code system defined for the extended reporting printer
associated with the report.

Varying Length Field Considerations

The data window for fields with the VARYING option specified on the DEFINE
statement is based on the maximum length of the field. The window is padded to
the right with blanks for VARYING fields less than the maximum.

Report Definition Statements
The REPORT statement and its associated parameters define the physical
attributes of your report. However, to define the content of your report, code the
following statements:
SEQUENCE
CONTROL
SUM
TITLE
HEADING
LINE

Note: You must code these statements (in the order shown) immediately after
the REPORT statement.

Report Processing 10–17

SEQUENCE Statement

SEQUENCE Statement
The SEQUENCE statement optionally specifies the order of the report. You can
order any report based on the content of one or more fields. The fields do not
have to be part of the printed report. The SEQUENCE statement syntax is:

Syntax
SEQUENCE field-name-1 [D] ...
 [IBM-sort-options]
 [JEF-sort-options]

Operation
field-name-1

h a report is ordered. You can specify
ve file or W type working

s. The fields specified are used as

If there are no DBCS fields identified as sort keys, the system sort identified in
the Options Module is invoked. The rules for supporting DBCS and MIXED
fields as sort keys are as follows:

1. All mixed fields are defined to the sort as alphanumeric MIXED fields.

2. Only the IBM and FACOM Kanji sorts are supported. If the DBCS code
system of the report work file is not IBM or JEF, then the standard system
sort is used and the DBCS fields are processed as alphanumeric field types.

3. If the DBCS code system of the report work file is IBM or JEF but your
system installation person has not identified the applicable Kanji sort in the
DBCS Options Module, then any DBCS fields coded are passed as sort keys
to the system sort as alphanumeric field types.

4. When support for the IBM or FACOM sort is defined in the DBCS Options
Module, the respective sort-options are supported. You can only code them
for DBCS fields. If you do not select a sort-option for a DBCS field, then the
field is defined to the sort as an alphanumeric field. If there are no DBCS
fields using any of the IBM or JEF sort-options, then the normal system sort
is used. That is, the applicable Kanji supportive sort is only used when
required.

Note: Varying length fields cannot be specified on a SEQUENCE statement.

The fieldname identifies a field on whic
multiple fieldnames. The fields must be in an acti
storage. Each field must be less than 256 byte
sort keys processed in major to minor order.

10–18 Reference Guide

SEQUENCE Statement

[D]

An optional D following a fieldname indicates that the field is sequenced into
descending order. If you do not code D after a fieldname, by default the field is
sorted in ascending order.

field-name-1 [IBM-sort-options] ...

An IBM-sort-option defines the Kanji sequence technique to be applied to the
DBCS field. For more specific information regarding the different techniques,
consult the IBM Program Description and Operation Manual for the Kanji/Chinese
Sort/Merge program product.

IBM-sort-options
field-name-1 +

[]
[BUSHU [D]]
[]
[SOKAKU [D]]
[]
[[]]
[KOKUGO field-name-2 [SMAP field-name-3] [D] [B] [I]]
[[DMAP field-name-4]]
[[]]
[]
[[]]
[DENWA field-name-2 [SMAP field-name-3] [D] [B] [I]]
[[DMAP field-name-4]]
[[]]

[BUSHU [D]]

This sort option invokes the Basic Radical Stroke-Count sequence for
fieldname-1. Coding a D immediately after BUSHU causes the field to be sorted
in descending Radical Stroke-Count order. If you do not code the D, by default
the field is sorted in ascending order.

[SOKAKU [D]]

This sort option invokes the Basic Total Stroke-Count sequence for fieldname-1.
Coding a D immediately after SOKAKU causes the field to be sorted in
descending Total Stroke-Count order. If you do not code the D, by default the
field is sorted in ascending order.

Report Processing 10–19

SEQUENCE Statement

[[]]
[KOKUGO field-name-2 [SMAP field-name-3] [D] [B] [I]]
[[DMAP field-name-4]]
[[]]

This sort option invokes one of two different Kanji sorting techniques depending
upon whether or not you choose the SMAP or DMAP keyword. Both techniques
require you to specify a phonetic syllabary field ─ fieldname-2. Fieldname-2
must be either an alphanumeric (type A) or DBCS (type K) field type. If
fieldname-2 is an alphanumeric field type, the field must contain the phonetic
reading of fieldname-1 in Katakana. If fieldname-2 contains DBCS format data, it
must contain the phonetic reading of fieldname-1 represented by IBM DBCS
Hiragana or Katakana.

If you do not specify SMAP or DMAP the Japanese Dictionary sequencing
technique is applied to fieldname-1. This technique sequences the records based
on the phonetic reading of the WHOLE Kanji field.

If you select SMAP or DMAP, then Kanji Index type processing is applied for
fieldname-1. This technique orders the records based on the phonetic reading of
each Kanji character. To do this you must supply a reading map so that the sort
can relate phonetic syllabary characters to the appropriate Kanji characters. The
reading map must be in the form of an alphanumeric field specified as
fieldname-3 or fieldname-4. Fieldname-3 specifies a field that contains a
single-map. Fieldname-4 specifies a field that contains a double-map. For more
information on the definition and creation of these bit map fields, see the IBM
Sort/Merge Program - Kanji/Chinese Manual.

Coding a D causes the field to be sorted in descending order. If the D is not
coded, by default the field is sorted in ascending order. Coding a B applies the
BUSHU (or Radical Stroke-Count) technique as a sub-sequence for those records
that have the same phonetic reading. If you do not code B, by default the field is
sub-sequenced using the SOKAKU (or Total Stroke-count). Coding an I causes
the phonetic reading order to be the IROHAON sequence. If you do not code I,
by default the phonetic order is the Japanese Dictionary or GOJUON sequence.

[[]]
[DENWA field-name-2 [SMAP field-name-3] [D] [B] [I]]
[[DMAP field-name-4]]
[[]]

10–20 Reference Guide

SEQUENCE Statement

The DENWA sort option invokes one of two different forms of the Japanese
Telephone Directory sequencing technique. The form of sequencing technique
that you use depends upon whether or not you specify the SMAP or DMAP
keyword. The Telephone Directory method requires you to specify a phonetic
syllabary field - fieldname-2. Fieldname-2 must be either an alphanumeric (type
A) or DBCS (type K) field type. If fieldname-2 is an alphanumeric field type, the
field must contain the phonetic reading of fieldname-1 in Katakana. When the
field contains DBCS format data, it must contain the phonetic reading of
fieldname-1 represented by IBM DBCS Hiragana or Katakana.

If you do not specify SMAP or DMAP, the Simple form of the Japanese
Telephone Directory order is applied to fieldname-1. This technique sequences
the records based on the representative reading of the first Kanji character in the
field. The representative reading of the first Kanji character is obtained from a
special representative reading table based on the Kanji character itself and the
voiceless sound of the first phonetic syllabary character in fieldname-2.

If you specify SMAP or PMAP, the All-Digit Japanese Telephone Directory
sequence is applied. This technique orders the records based on the
representative reading of all the Kanji characters in the field. Sequencing is
determined by applying representative reading to each Kanji character. For this,
a reading map field is required, in the form of an alphanumeric field specified as
fieldname-3 or fieldname-4. The reading map field identifies a bit map that
enables the sort to relate phonetic syllabary characters to the appropriate Kanji
characters.

Fieldname-3 specifies a field that contains a single-map. Fieldname-4 specifies a
field defined in filename-1. The field contains a double-map. For more
information on the definition and creation of these bit map fields, see the IBM
Sort/Merge Program - Kanji/Chinese Manual.

Coding a D causes the field to be sorted in descending order. If you do not code
D, by default the field is sorted in ascending order. Coding a B applies the
BUSHU (or Radical Stroke-Count) technique as a sub-sequence for those records
that have the same phonetic reading. If you do not code B, by default the field is
sub-sequenced using the SOKAKU (or Total Stroke-count). Coding an I causes
the phonetic reading order to be the IROHAON sequence. If you do not code I,
by default the phonetic order is the Japanese Dictionary or GOJUON sequence.

field-name-1 [JEF-sort-options] ...

A JEF-sort-option defines the Kanji sequence technique to be applied to the
DBCS field. For more specific information regarding the different techniques,
consult the FACOM Sort/Merge Program Description Manual.

Report Processing 10–21

JEF-sort-options
field-name-1 +

SEQUENCE Statement

 [{BUSHU }]
 [({SOKAKU} ...)]

10–22 Reference Guide

phonetic reading order to be the IROHAON sequence. If you do not code I, by
default the phonetic order is the Japanese Dictionary or GOJUON sequence.

 [{ON }]
 [{KUN }]
 []
 [KOKUGO (field-name-2 [D] [I])]
 []
 [DENWA (field-name-2 [D] [I] [DLM])]
 []

[{BUSHU }]
[({SOKAKU} ...)]
[{ON }]
[{KUN }]

Each of these words identify a unique form of Kanji sequencing.

BUSHU—ordered by the Radical Stroke count of the Kanji character.

SOKAKU—ordered by the Total Stroke count of the Kanji character.

ON—ordered by the 'ON' or Chinese pronunciation of the Kanji Character.

KUN—ordered by the 'KUN' or Japanese pronunciation of the Kanji Character.

Specify one or more of these keywords to indicate the ordering technique that is
to apply to fieldname-1. If you code more than one keyword, they must be coded
in major to minor order. Each minor ordering technique is used to order those
records that are the same after applying the preceding ordering technique. For
example if you coded “USING (FIELD-ONE SOKAKU ON KUN)” FIELD-ONE
is ordered, using the Total Stroke Count of the Kanji. Those records having the
same count are then ordered by their ON reading. If there are records still the
same, they are ordered by their KUN or Japanese reading.

Each of the keywords can only be coded once after fieldname-1.

[KOKUGO (field-name-2 [D] [I])]

The KOKUGO sort option invokes the Japanese Dictionary sequencing technique
for fieldname-1. This technique sequences the records based on the phonetic
reading of the WHOLE Kanji field. This technique requires you to specify a
phonetic syllabary field - fieldname-2. Fieldname-2 must be either an
alphanumeric (type A) or DBCS (type K) field type. If fieldname-2 is an
alphanumeric field type, the field must contain the phonetic reading of
fieldname-1 in Katakana. When the field contains DBCS format data, it must
contain the phonetic reading of fieldname-1 represented by JEF DBCS Hiragana
or Katakana.

Coding a D causes the field to be sorted in descending order. If you do not code
the D, by default the field is sorted in ascending order. Coding an I causes the

CONTROL Statement

[DENWA (field-name-2 [D] [I] [DLM])]

The DENWA sort option invokes the Japanese Telephone Directory sequencing
technique for fieldname-1. This technique requires the specification of a phonetic
syllabary field - fieldname-2. Fieldname-2 must be either an alphanumeric (type
A) or DBCS (type K) field type. If fieldname-2 is an alphanumeric field type, the
field must contain the phonetic reading of fieldname-1 in Katakana. When the
field contains DBCS format data, it must contain the phonetic reading of
fieldname-1 represented by JEF DBCS Hiragana or Katakana.

Coding a D causes the field to be sorted in descending order. If you do not code
the D, by default the field is sorted in ascending order. Coding an I causes the
phonetic reading order to be the IROHAON sequence. If you do not code I, by
default the phonetic order is the Japanese Dictionary or GOJUON sequence. You
can code the DLM subparameter if both fieldname-1 and fieldname-2 contain
space characters that act as delimiters thus permitting the JEF Kanji Sort to
associate the phonetic characters in fieldname-2 with the Kanji characters in
fieldname-2. If no such delimiters exist, you should not code DLM. When you do
not code the DLM subparameter, the NODLM sort option is assumed.

CONTROL Statement
The CONTROL statement identifies control fields used for a control report. You
can code DBCS and MIXED fields on this statement in a report regardless of the
type of printer that is to receive the output records. A control break occurs
whenever the value of any control field changes or end-of-report occurs. The
control break at end-of-report is equivalent to the final break. Specify control
fields in major to minor order. A break level, discussed later in this chapter
under BREAK-LEVEL, is also assigned to each control field. Comparison of
control fields is a logical compare. The syntax of the CONTROL statement is:

Syntax
 [] []
CONTROL [field-name] [NEWPAGE] [NOPRINT] ...
 [FINAL] [RENUM]
 [] []

Operation

You can specify one or more control breaks. If you do not specify any, a final
break is implied.

Report Processing 10–23

[]
[field-name]

SUM Statement

[FINAL]
[]

Prior to the first fieldname, if any, you can code FINAL to specify options for the
control break at end-of-report. Fieldname specifies any non-quantitative field
located in an active file or in a W-type working storage field.

Note: Varying length and quantitative fields cannot be specified on a CONTROL
statement.

Three options alter normal processing of a control break:

[NEWPAGE]

NEWPAGE causes a skip to top-of-page after control break processing is
complete for the specified field. NEWPAGE specified with FINAL causes a skip
to top-of-page before control-break processing occurs at end-of-report.

[RENUM]

RENUM performs the same function as NEWPAGE, and also resets the page
number to 1 on the page following the control break.

[NOPRINT]

NOPRINT suppresses printing the summary line group for the specified control
break. All other control break processing for the specified control break is
performed as usual.

See Label Reports and CONTROL Reports later in this chapter for detailed
examples of the CONTROL statement.

SUM Statement
The SUM statement specifies the quantitative fields that are totaled for a control
report. Its syntax is:

Syntax
SUM field-name ...

10–24 Reference Guide

TITLE Statement

Operation
field-name

Fieldname is any quantitative field contained in an active file or W storage. You
can specify multiple fields.

Normally, all quantitative fields specified on LINE statements are automatically
totaled. The SUM statement overrides this process; only the fields specified on
the SUM statement are totaled. The fields specified on a SUM statement do not
have to be specified on a LINE statement. The SUM statement is only valid
within a Control Report.

TITLE Statement
One or more TITLE statements define the optional report title. The TITLE
statement defines the title items and their position on the title line.

Coding DBCS and MIXED fields and literals on these control cards is only
supported for reports assigned to an extended reporting printer that supports
DBCS data. For a full description of extended reporting printers, please see the
Extended Reporting Facilities Guide.

The system date and current page count are automatically positioned on title line
one. This can be overridden by the options on the REPORT statement
(NODATE/NOKDATE/LONGDATE/SHORTDATE and
NOPAGE/NOKPAGE).

Those fields and literals coded on a TITLE statement containing DBCS data,
convert the DBCS data into the DBCS code supported by the extended reporting
printer associated with the report. The data format of the literal remains
unchanged. TITLE statement syntax is:

Syntax
 {field-name }
 {'literal-2' }
TITLE [literal-1] {+integer-1 } ...
 {-integer-1 }
 {COL integer-2}
 {#integer-3 }

Report Processing 10–25

TITLE Statement

Operation
[literal-1]

Specify the number of a title with literal-1. The title number must be from 1 to 99
(default is 1). The title number specifies the position of the title line within the
title area. You must specify title numbers in ascending order with no duplicates.
The title number of the first TITLE statement must be 1 or unspecified.

You must code at least one title item, specified by fieldname or literal-2, on each
TITLE statement.

{field-name}

The fieldname entry specifies a field in any active file, working storage field, or
system-defined field.

{'literal-2'}

Literal-2 specifies a character string for a title item. Specify the literal within
quotes.

By default, each title line is formatted as a list of title items that are separated by
the number of spaces defined by the SPACE parameter of the REPORT
statement. The +, -, and COL parameters can modify this positioning.

{ }
{+integer-1}
{-integer-1}

The space adjustment parameters, +integer-1 or -integer-1, modify the normal
spacing between title items. Integer-1 is added to or subtracted from SPACE to
get the absolute space between title items. The absolute space value can range
from zero to any amount that still enables the title line to fit within the current
LINESIZE value.

{COL integer-2}

The COL parameter specifies the print column number where the next title item
is placed. The value of integer-2 has a valid range of 1 to 'nnn', where 'nnn'
cannot force the following title item beyond the end of the title line LINESIZE.
COL is permitted only when you specify the NOADJUST parameter of the
REPORT statement. If the report is associated with an extended reporting printer
that is not a standard Line Printer, an error results if two or more fields and/or
literals overlap. (See the Extended Reporting Facility Guide for more information
about extended reporting.)

10–26 Reference Guide

TITLE Statement

Each title line is centered within the title area of the report unless you specify
NOADJUST. TITLE 01 receives extra consideration as follows:

1. If the report is to be printed on an extended reporting printer that supports
DBCS data, the system-defined field KANJI-DATE is automatically placed in
positions one through eighteen of the title area. If the NOKDATE parameter
was specified on the REPORT statement or the report is directed to a printer
that does not support DBCS data, the system-defined field, the current date
is automatically placed, starting in position one of the title area. If you code
the NODATE parameter on the REPORT statement, neither system-defined
field is placed on the title.

2. If the report is to be printed on an extended reporting printer that supports
DBCS data, the current page number and the Kanji character for page are
placed at the right-hand end of the title area. The current page number is
automatically edited and converted into the appropriate DBCS values before
being combined before the Kanji character for page. If the NOKPAGE
parameter was specified on the REPORT statement or the report is directed
to a printer that does not support DBCS data, the value in the PAGEWRD
option (see the “Options Table” appendix) and the current page count are
placed at the right-hand end of the title area. If you code the NOPAGE
parameter on the REPORT statement, neither format of the page number is
placed on the title.

[#integer-3]

The #integer-3 value defines a font index. The value of integer-3 identifies a font
whose specifications are to be used for the next display item. You can only
specify this option if the report has been associated with an extended reporting
printer. Integer-3 identifies the font number of a font defined for the associated
extended reporting printer. If you do not code the font number, then the next
display item uses the default font for the assigned extended reporting printer.

If you code space adjustment or COL options before the font index option,
integer-1 or integer-2 refers to horizontal sizes based on the default width of the
assigned extended reporting printer. If you code integer-3 before either of these
options, integer-1 or integer-2 refers to horizontal sizes based on the width of the
font that integer-3 identified. (See the Extended Reporting Facility Guide for more
information about extended reporting.)

Report Processing 10–27

HEADING Statement

HEADING Statement
The HEADING statement optionally defines an alternate heading for a field.
When defining the field, you can specify the default heading. The HEADING
statement in a report enables you to override the default for that report. Should
there be a DBCS or MIXED literal in any of the lines of the heading that is to be
used for a report, then the heading is only valid if the report is directed to an
extended reporting printer that supports DBCS data. Otherwise, a syntax error is
generated when the field is used on the LINE statement.

If the heading of the field contains DBCS or MIXED data, the literal is converted
to the DBCS code system of the extended reporting Printer associated with the
report. The data format of the literal remains unchanged. The syntax of the
HEADING statement is:

Syntax
HEADING field-name ([#integer-1] 'literal' ...)

Operation
field-name

The fieldname specifies a field coded on the LINE 01 statement.

[#integer-1]

Integer-1 defines the font number of a font used to format 'literal-1' in the
heading area of a report. You can only specify integer-1 if you direct the report to
an extended reporting printer. If you direct the report to a normal printer, a
syntax error is output when you code integer-1. Each 'literal-1' can use a unique
font index by coding the # sign and a value for integer-1 before 'literal-1'. Any
'literal-1' that does not have a font index assigned uses the default font for the
assigned extended reporting printer. (See the Extended Reporting Facility Guide for
more information about extended reporting.)

('literal' ...)

One or more alphanumeric literal values specify the content of the alternate
heading. Multiple literals within the parentheses are stacked vertically over the
field when printed.

The HEADING statement overrides the field heading defined in the library
section. The HEADING statement also provides alternate heading capabilities
for system-defined fields such as TALLY and LEVEL.

10–28 Reference Guide

LINE Statement

LINE Statement

Report Processing 10–29

{-integer-1}

The LINE statement defines the content of a report line. One or more field values
or literals can be contained on a report line; each one is a line item. The support
for DBCS and MIXED fields and literals is limited to those reports directed to
extended reporting printers supporting DBCS data.

Those fields and literals that contain DBCS data have their DBCS data converted
into the DBCS code supported by the extended reporting printer associated with
the report. The data format of the field or literal remains unchanged. The syntax
of the LINE statement is:

Syntax
 {field-name }
 {'literal-2' }
LINE [literal-1] {+integer-1 } ...
 {-integer-1 }
 {COL integer-2}
 {POS integer-3}
 {#integer-4 }

Operation
[literal-1]

Specify the optional line number with literal-1. The line number specifies the
position of the line within the line group. The value must be from 1 to 99; the
default is 1. You can omit literal-1 of the first LINE. You must specify the line
numbers for multiple LINE statements in ascending order with no duplicates.
Specify at least one data item (fieldname or 'literal-2') on each LINE statement.

{field-name}

Fieldname can specify any field contained in an active file or in working storage.
If the field is contained in a file or W storage, data is transferred to the print line
at the time the PRINT statement is executed. If the field is contained in S storage,
data is transferred to the print line at the time the line is printed.

{'literal-2'}

'Literal-2' defines a static value for a line item. It must be an alphanumeric literal
enclosed within single quotes.

{ }
{+integer-1}

LINE Statement

The space adjustment parameters, +integer-1 or -integer-1, modify the spacing
between line items. The integer-1 value is added to or subtracted from the
SPACE value to give the absolute spacing between line items. The absolute space
value can range from zero to any amount that still lets the next line item fit
within the line defined by LINESIZE.

{COL integer-2}

COL specifies the column number where the next line item is placed. You must
specify the NOADJUST option of the REPORT statement to use the COL option.
The value of integer-2 has a valid range of 1 to 'nnn', where 'nnn' cannot be so
large that the following line item extends beyond the end of the line defined by
LINESIZE.

When the report is associated with an extended reporting printer that is not a
standard line printer, an error results if two or more fields and/or literals
overlap. (See the Extended Reporting Facility Guide for more information about
extended reporting.)

{POS integer-3}

The POS parameter enables you to position line items on lines 2 through 99 so
that they line up under particular line items on the first line. Integer-3
corresponds to the line item number of LINE 01 under which the line item is
placed.

For control reports, any quantitative field on the LINE statement is automatically
totaled on each summary line. This feature can be overridden on the SUM
statement.

{#integer-4}

The font index option identifies the font specifications to be used for the next
display item. You can only specify this option if the report has been associated
with an extended reporting printer. Integer-4 identifies the number of a font
defined for the associated extended reporting printer. If you do not code the font,
the next display item uses the default font for the assigned extended reporting
printer.

If you code space adjustment or COL options before the font index option,
integer-1 refers to horizontal sizes based on the default width of the assigned
extended reporting printer. If you code the font index before either of these
options, then integer-1 refers to horizontal sizes based on the width of the font
that integer-4 identifies. (See the Extended Reporting Facility Guide for more
information about extended reporting.)

10–30 Reference Guide

Standard Reports

Standard Reports
The report facility includes all of the functions necessary to produce most reports
very easily. Using CA-Easytrieve Plus report options, you can produce almost
any report format. Most reports, however, are variations of what is termed the
standard report. This topic describes the standard report.

Titles

The title is the first item printed on each report page. You can specify the report
title with up to 99 TITLE statements. The following example displays the title
area of a report.

Note: There is a maximum of 32,767 for page count. This field is internally a two
byte signed binary field.

The following is a list of particular points to remember about standard report
titles:

■ TITLE 01 items are printed at top-of-form.

■ The current date and page count are placed at either end of the TITLE 01
line.

■ Title lines are centered within the space indicated by the LINESIZE
parameter of the REPORT statement.

■ The title line number controls the vertical spacing of titles relative to the first
title.

■ The SPACE parameter controls the number of blank characters (spaces)
between title items.

The following are title statement examples and their resulting titles:

Report Processing 10–31

Statements:

Standard Reports

FILE PERSNL FB(150 1800)
%PERSNL
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 50
 TITLE 01 'TEMPORARY EMPLOYEES'
 TITLE 03 'IN DEPARTMENT' DEPT
 LINE 01 ' '

Produce:

2/09/87 TEMPORARY EMPLOYEES PAGE 1

 IN DEPARTMENT 903

You can override the automatic (default) functions associated with title contents
and spacing to produce any desired report title. This can be necessary to produce
reports that use pre-printed forms as the output medium. You can use the
following parameters to produce non-standard title content and spacing:

■ NOADJUST causes each title line to be left-justified on the page. Use of the
COL positioning parameter requires NOADJUST. NOADJUST can cause line
items to overlay the tags printed for SUMCTL TAG. COL positioning is
necessary for tag to appear.

■ NODATE and NOPAGE inhibit current date and page count information
from being placed on the first title line.

The current date overlays the left-most positions of TITLE 1 when NOADJUST is
specified. Either use NODATE or reserve an area by specifying COL 10 or COL
12.

The following examples of title statements use title content and space adjustment
parameters. The report title that results from the statements is also illustrated.

Statements:

FILE PERSNL FB(150 1800)
%PERSNL
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
REPORT REPORT1 NOADJUST NODATE NOPAGE
 TITLE 01 COL 20 SSN
 TITLE 02 SYSDATE COL 20 NAME
 TITLE 03 COL 20 ADDR-STREET
 TITLE 04 COL 20 ADDR-CITY -3 ',' +
 -2 ADDR-STATE +5 ADDR-ZIP
 LINE 01 ' '

Produce:

10–32 Reference Guide

Standard Reports

 column column
 0 2
 1 0

 025-30-5228
 11/19/86 WIMN GLORIA
 430 M ST SW 107
 BOSTON , MA 02005

Headings

A report heading is normally printed for line items specified on LINE 01. Each
heading is centered over its associated line item. The following rules control the
heading; the order in which they are listed indicates the hierarchy of override:

1. The NOHEADING parameter of REPORT inhibits the printing of any
headings.

2. The HEADING statement sets the item heading content.

3. The HEADING parameter of DEFINE sets the item heading content.

4. Fieldname-1 of DEFINE sets the item heading content.

5. Line items that are literals do not have headings.

6. Only LINE 01 items have headings.

Report Processing 10–33

Standard Reports

10–34 Reference Guide

 ...

The following example illustrates the positioning of headings in a typical report.
Line items do not always have the same number of heading entries. In this case,
the corresponding heading line area is blank for those items with missing
headings.

 T I T L E A R E A
TITLESKIP space
 HEADING
 HEADING
Heading HEADING HEADING
 area HEADING HEADING HEADING

 line line literal line
report item item line item
 body item ...

The following example illustrates various heading options:

Statements:

FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 NAME 17 20 A
 NAME-LAST NAME 8 A
 NAME-FIRST NAME +8 12 A
 PAY-NET 90 4 P 2
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 HEADING PAY-NET ('NET', 'PAY')
 LINE NAME SSN '* NO OVERTIME *' PAY-NET

Produce:

 SOCIAL
 SECURITY NET
 NAME NUMBER PAY

 WIMN GLORIA 025-30-5228 * NO OVERTIME * 251.65
 BERG NANCY 121-16-6413 * NO OVERTIME * 547.88

Line Group

Lines compose the body of a report. The lines of a report are output in groups for
each PRINT statement issued. All of the LINE statements of the report make up a
line group, which is also called a logical report line.
LINE ... }
LINE 02 ...} line or logical report
LINE 03 ...} group line

Standard Reports

Line Item Positioning

Line item positioning follows three rules:

■ LINE 01 items and their associated headings are centered in an area whose
length is controlled by the longer of the following:

a. The line item

b. The longest heading entry

The resulting value is called the item length.

■ The first line item other than on LINE 01 (that is, LINE 02 through LINE 99)
is positioned under the first item of LINE 01. The data is left-justified under
the LINE01 data regardless of the heading size.

■ Blank characters (spaces) separate all line items according to the value of the
SPACE parameter of the REPORT statement.

When a LINE statement is analyzed according to the previous rules, the total
number of characters on that line must not exceed LINESIZE.

The following example illustrates line item positioning:
FILE PERSNL FB(150 1800)
 SSN 4 5 P MASK '999-99-9999' +
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
 NAME 17 20 A HEADING 'EMPLOYEE NAME'
 NAME-LAST NAME 8 A HEADING('LAST' 'NAME')
 NAME-FIRST NAME +8 12 A HEADING('FIRST' 'NAME')
 ADDRESS 37 39 A
 ADDR-STREET 37 20 A HEADING 'STREET'
 ADDR-CITY 57 12 A HEADING 'CITY'
 ADDR-STATE 69 2 A HEADING 'STATE'
 ADDR-ZIP 71 5 N HEADING('ZIP' 'CODE')
 SEX 127 1 N HEADING('SEX' 'CODE')
JOB INPUT PERSNL NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 LINE NAME SSN SEX
 LINE 02 ADDR-STREET POS 2 ADDR-CITY

 item area item area item area

 1 5 10 20 1 5 10 1 4

 SOCIAL
 SECURITY SEX heading
 EMPLOYEE NAME NUMBER CODE

 WIMN GLORIA 025-30-5228 1 line
 430 M ST SW 107 BOSTON group

Report Processing 10–35

Standard Reports

Special Positioning

Sometimes the standard positioning of line items on a report is unsuitable for
producing the desired result, as in the case of aligning numeric fields on LINE 02
with the decimal point of corresponding fields on LINE 01. The 'POS nnn' line
item adjusting parameter left-justifies the corresponding fields, but when the
LINE 02 field is not as long as the LINE 01 field, the two fields are unaligned. If
that happens, use the '+nnn' or '-nnn' line item adjustment parameter after the
'POS nnn' parameter to adjust the data's position. The following example
illustrates poor and good decimal point alignment.

Statements:

DEFINE FLD1 W 4 P 2 VALUE 123.45
DEFINE FLD2 W 3 P 2 VALUE 678.90
JOB INPUT NULL NAME MYPROG
 PRINT REPORT1
 STOP
*
REPORT REPORT1 LINESIZE 40
 LINE 01 FLD1 FLD1
 LINE 02 FLD2 POS 2 +3 FLD2

Produce:

 poor good
 column column
 1 5 10 15 1 5 10 15

 FLD1 FLD1

 123.45 123.45 line 01
 678.90 678.90 line 02

10–36 Reference Guide

Standard Reports

Pre-printed Form Production

Pre-printed form production is another instance when standard line item
positioning must be overridden. A very simple example of this override is W-2
form printing in a payroll application. The following example depicts the report
declarative statements necessary to print a hypothetical W-2 form:
REPORT PAGESIZE 20 NOADJUST NOHEADING SPACE 1
 LINE COL 7 'YOUR COMPANY NAME' COL 33 '903' +
 COL 39 '12-3456789'
 LINE 02 COL 7 'YOUR COMPANY STREET'
 LINE 03 COL 7 'YOUR COMPANY CITY STATE ZIP'
 LINE 10 COL 7 SSN COL 23 YTD-FEDTAX +
 COL 39 YTD-WAGES +
 COL 54 YTD-FICA
 LINE 12 COL 7 EMP-NAME COL 39 YTD-WAGES
 LINE 14 COL 7 EMP-STREET
 LINE 15 COL 7 EMP-CITY EMP-STATE EMP-ZIP

Report Processing 10–37

Standard Reports

SPREAD Option

The SPREAD option of the REPORT statement offers a unique opportunity for
line item spacing. When you use reports as work sheets, it is often desirable to
space line items as far apart as possible. SPREAD overrides the SPACE
parameter of the REPORT statement and creates report lines with the maximum
number of spaces between each item, as the following example illustrates:

Statements:

DEFINE FLD1 W 4 P 2 VALUE 123.45
DEFINE FLD2 W 3 P 2 VALUE 678.90
DEFINE FLD3 W 4 P 2 VALUE 1129.59
JOB INPUT NULL NAME MYPROG
 PRINT REPORT1
STOP
*
REPORT REPORT1 SPREAD LINESIZE 65
 TITLE 'S P R E A D EXAMPLE'
 LINE FLD1 FLD2 FLD3

Produce:

 11/19/86 S P R E A D EXAMPLE PAGE 1

 FLD1 FLD2 FLD3
 123.45 678.90 1,129.59

10–38 Reference Guide

Label Reports

Label Reports
You can use the label report capability to print mailing labels and other
applications that require inserting variable data in a repetitious format.

A label report is different from a standard report in the following ways:

■ Label reports do not have titles and headings.

■ Multiple labels can be printed side-by-side.

■ Controlled label reports permit control breaks, but do not automatically
permit total quantitative fields. Totals, however, can be specified on a SUM
statement and processed in BEFORE-BREAK and AFTER-BREAK
procedures.

You can use the label report function whenever a complete logical print page is
produced by each PRINT statement. Consider the W-2 form printing example;
print time can be reduced substantially by having 2-up forms. You can then
modify report declaration statements as follows:
REPORT LBLS LABELS (ACROSS 2 DOWN 15 SIZE 65 NEWPAGE) SPACE 1
 LINE 01 COL 7 'YOUR COMPANY NAME' COL 33 '903' +
 COL 39 '12-3456789'
 LINE 02 COL 7 'YOUR COMPANY STREET'
 LINE 03 COL 7 'YOUR COMPANY CITY STATE ZIP'
 LINE 10 COL 7 SSN COL 23 YTD-FEDTAX +
 COL 39 YTD-WAGES +
 COL 54 YTD-FICA
 LINE 12 COL 7 EMP-NAME COL 39 YTD-WAGES
 LINE 14 COL 7 EMP-STREET
 LINE 15 COL 7 EMP-CITY EMP-STATE EMP-ZIP

Report Processing 10–39

Label Reports

CONTROL Statement

You can use the CONTROL statement with label reports to truncate a group of
labels. Truncating makes it easy to separate labels after they are printed. The
following example demonstrates how a new label page starts when the control
field changes.

Statements:

 FILE PERSNL FB(150 1800)
 %PERSNL
 FILE SORTWRK FB(150 1800) VIRTUAL
 COPY PERSNL
 SORT PERSNL TO SORTWRK +
 USING (ADDR-STATE, ADDR-ZIP) NAME MYSORT
 JOB INPUT SORTWRK NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LABELS
 CONTROL ADDR-STATE NEWPAGE
 LINE 01 NAME
 LINE 02 ADDR-STREET
 LINE 03 ADDR-CITY, ADDR-STATE, ADDR-ZIP

Produce:

Note: Any labels remaining on a line are left unused. The optional NEWPAGE
parameter causes a top-of-page for the next print line.

10–40 Reference Guide

Sequenced Reports

Sequenced Reports

SEQUENCE Statement

Report sequence is controlled either by the order in which PRINT statements are
issued or by the SEQUENCE statement. You can print both standard and label
reports in any sequence.

Report definitions that contain SEQUENCE statements cause the report data to
be spooled to a temporary work file. Work file usage is transparent.

The SEQUENCE function is performed by invoking your installation's sort
program. The temporary workfile is input to the sort program (through its E15
exit). When the sort is complete, the work file data is retrieved (through its E35
exit) and the report is produced.

Only those data elements used in the report are sorted. The sorted output is
directly printed from the E35 exit. These attributes combine to make the
SEQUENCE facility extremely efficient.

Report Processing 10–41

CONTROL Reports

CONTROL Reports

10–42 Reference Guide

non-control reports. Data reference for total lines actually accesses SUMFILE
data. This data includes all control fields and ten-byte (18 digit) packed fields for
all accumulators. (See Summary File later in this chapter.)

The CONTROL statement specifies that a report automatically accumulates and
prints totals of quantitative report information. The report accumulates
information according to the hierarchy indicated on the CONTROL statement.

Terminology

The following terms are used throughout the discussion on control reports:

■ A control field is any field named on a CONTROL statement to establish the
hierarchy of a control report.

■ A control break occurs whenever any field of the control hierarchy changes
value.

■ A total line is a line group in a report body that contains control totals. Total
lines are normally annotated on the left with the value of control fields
according to the SUMCTL parameter of REPORT. This is done by listing the
control fields first on the LINE statement.

■ A detail line is the same line data as in a standard report body line (not a
total line). Detail lines are normally annotated on the left, with the value of
control fields specified according to the DTLCTL parameter of REPORT. The
SUMMARY parameter of REPORT inhibits the printing of detail lines on a
control report.

■ Accumulators are system-created fields which contain totals. Accumulators
are created for:

a. All fields designated on the SUM statement

b. All active file or W storage quantitative (signed) fields designated on the
line group (LINE nn) statements, if a SUM statement is not specified.
(Quantitative fields are numeric fields with a decimal point designation
of 0 through 18.)

■ SUMFILE data are the contents of control fields and accumulators at each
minor control break.

Data Reference

In general, report statements and procedures can reference any field of an active
file or working storage. (Some report procedures have minor restrictions that are
described with the associated procedure.)

Statements and procedures can directly reference data for detail lines in

CONTROL Reports

TALLY

TALLY is a system-defined field for control reports. TALLY contains the number
of detail records that comprise a control break. You can use TALLY on a LINE
statement or you can use it in calculations within report procedures. TALLY is
commonly used to determine averages for a control level.

TALLY is a ten-byte packed decimal field with zero decimal places. This
definition is used for calculations contained within report procedures. REPORT
TALLYSIZE defines the number of digits that are printed for TALLY. A TALLY
accumulator is created for each control break level.

LEVEL

LEVEL is a system-defined field provided for control reports. The field is
defined as a two-byte binary field. The value in LEVEL indicates the control
break level and varies from 0 to 'n + 1' where:

■ LEVEL = 0 when processing detail lines

■ LEVEL = n for total line processing at each control level

■ LEVEL = n + 1, when processing FINAL totals.

See BREAK-LEVEL on the following page for an example of testing LEVEL and
BREAK-LEVEL.

Report Processing 10–43

CONTROL Reports

BREAK-LEVEL

BREAK-LEVEL is a system-defined field whose value indicates the highest
control break level. The following example illustrates using BREAK-LEVEL to
display an appropriate message in a BEFORE-BREAK procedure:
REPORT RPT
 SEQUENCE REGION BRANCH
 CONTROL REGION BRANCH
 LINE REGION BRANCH NAME PAY-GROSS
 BEFORE-BREAK. PROC
 IF LEVEL = 1 . * processing lowest break
 IF BREAK-LEVEL = 1 . * only branch is breaking
 DISPLAY '*** BRANCH TOTALS'
 ELSE-IF BREAK-LEVEL = 2. * region is breaking too
 DISPLAY '*** BRANCH AND REGION TOTALS'
 ELSE-IF BREAK-LEVEL = 3. * final report totals
 DISPLAY '*** BRANCH, REGION, AND FINAL TOTALS'
 END-IF
 END-IF
 END-PROC

The BEFORE-BREAK procedure is invoked before summary lines are printed.
See Report Procedures later in this chapter for more information.

In the previous example, LEVEL and BREAK-LEVEL fields are used to
determine the appropriate message displayed before the summary lines are
printed. Testing for LEVEL 1 tells us that the first summary line is going to be
printed next (BRANCH totals). When BREAK-LEVEL is 1, only the BRANCH
field is breaking. Therefore, we want to display a message stating this. When
BREAK-LEVEL is 2, the REGION field is breaking. This causes both BRANCH
and REGION summary lines to print. When BREAK-LEVEL is 3, CA-Easytrieve
prints BRANCH, REGION, and final summary lines.

IF BREAK/IF HIGHEST BREAK Processing

An alternative to testing LEVEL and BREAK-LEVEL is to use IF fieldname
BREAK and IF fieldname HIGHEST-BREAK processing. Using the example in
the following example, you can code the following for the same result:
REPORT RPT
 SEQUENCE REGION BRANCH
 CONTROL REGION BRANCH
 LINE REGION BRANCH NAME PAY-GROSS
 BEFORE-BREAK. PROC
 IF BRANCH BREAK . * processing lowest break
 IF BRANCH HIGHEST-BREAK . * only branch is breaking
 DISPLAY '*** BRANCH TOTALS ***'
 ELSE-IF REGION HIGHEST-BREAK . * region is breaking also
 DISPLAY '*** BRANCH AND REGION TOTALS ***'
 ELSE-IF FINAL HIGHEST-BREAK . * final report totals
 DISPLAY '*** BRANCH, REGION AND FINAL TOTALS ***'
 END-IF
 END-IF
 END-PROC

10–44 Reference Guide

CONTROL Reports

Coding IF fieldname BREAK is equivalent to coding IF LEVEL = x, where x is the
break level assigned to fieldname. IF HIGHEST-BREAK performs the same
function against the BREAK-LEVEL field. IF BREAK and IF HIGHEST-BREAK
have the advantage of dynamically changing the LEVEL value if fields are added
to or removed from the CONTROL statement.

Control Report Contents

The report body contains the only difference between standard and control
report contents. Control reports print total lines in addition to detail lines
(optional). The following examples use two control fields (STATE and ZIP) that
contain data that is two and five bytes long, respectively, and one quantitative
field (PAY-NET) that contains numeric data.

The standard control report contains standard report data plus total data. The
following example illustrates the report body of such a report. Detail and total
lines are shown, with the totals illustrating the hierarchy of the report data.

Statements:

 FILE FILE1 CARD
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 END
 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Report Processing 10–45

CONTROL Reports

Produce:

10–46 Reference Guide

 ZIP total TX 75218 777.77
 STATE total TX 777.77

 FINAL total 2222.09

 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 detail BROWN IL 60076 678.90
 detail BROWN 123.45
 ZIP total IL 60076 802.35

 detail JONES IL 60077 543.21
 detail JONES 98.76
 ZIP total IL 60077 641.97

 STATE total IL 1444.32

 detail SMITH TX 75218 666.66
 detail SMITH 111.11
 ZIP total TX 75218 777.77

 STATE total TX 777.77

 FINAL total 2,222.09

The same report without the detail lines is a SUMMARY report. For example:

Statements:

 FILE FILE1 CARD
 LAST-NAME 1 20 A
 STATE 21 2 A
 ZIP 23 5 N
 PAY-NET 28 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 SUMMARY +
 DTLCTL NONE
 SEQUENCE STATE ZIP
 CONTROL STATE ZIP
 LINE 01 STATE ZIP PAY-NET
 END
 BROWN IL6007612345
 BROWN IL6007667890
 JONES IL6007709876
 JONES IL6007754321
 SMITH TX7521811111
 SMITH TX7521866666

Produce:

 Control Fields Accumulator

 STATE ZIP PAY-NET

 ZIP total IL 60076 802.35
 ZIP total IL 60077 641.97
 STATE total IL 1444.32

CONTROL Reports

DTLCTL

The DTLCTL parameter of REPORT establishes the method for printing control
field values on detail lines of a control report by using the subparameters
EVERY, FIRST and NONE. The following example illustrates an example
program using DTLCTL options:
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 DTLCTL option (* with option being EVERY, FIRST, and NONE *)
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

The following example shows the results of using all three DTLCTL options:

EVERY—prints all control fields on every detail line.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

detail BROWN IL 60076 678.90
detail BROWN IL 60076 123.45
ZIP total IL 60076 802.35

detail JONES IL 60077 543.21
detail JONES IL 60077 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

detail SMITH TX 75218 666.66
detail SMITH TX 75218 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

Report Processing 10–47

CONTROL Reports

FIRST—prints all control fields on the first detail line at top-of-page and after
each break.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

detail BROWN IL 60076 678.90
detail BROWN 123.45
ZIP total IL 60076 802.35

detail JONES IL 60077 543.21
detail JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

detail SMITH TX 75218 666.66
detail SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

NONE—prints no control fields on detail lines.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

detail BROWN 678.90
detail BROWN 123.45
ZIP total IL 60076 802.35

detail JONES 543.21
detail JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

detail SMITH 666.66
detail SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

10–48 Reference Guide

CONTROL Reports

SUMCTL

The SUMCTL parameter of REPORT establishes the method for printing control
field values on total lines of a control report by using the subparameters ALL,
HIAR, NONE and TAG. (The DTLCOPY subparameter controls all non-control
non-total values on total lines.) The following example shows an example
program using these options:
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMCTL option
 (* with option being ALL, HIAR, NONE, and TAG *)
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

The following example illustrates the results of using three of the SUMCTL
options:

ALL—prints all control fields on every total line.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
ZIP total IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 60077 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 75218 777.77

FINAL total TX 75218 2222.09

Report Processing 10–49

CONTROL Reports

HIAR—prints control fields in hierarchical order on total lines.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
ZIP total IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
ZIP total IL 60077 641.97

STATE total IL 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
ZIP total TX 75218 777.77

STATE total TX 777.77

FINAL total 2222.09

NONE—prints no control fields on total lines.
 Control Fields Accumulator

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
ZIP total 802.35

 JONES IL 60077 543.21
 JONES 98.76
ZIP total 641.97

STATE total 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
ZIP total 777.77

STATE total 777.77

FINAL total 2222.09

TAG

The TAG subparameter of SUMCTL creates a line area on the left side of the total
line. This LINE 01 item is governed by the following rules:

■ The length of the area is the length of the longest control-fieldname plus
seven.

■ FINAL TOTAL is the annotation for the final totals line.

■ The line item area is positioned at the left margin of the report.

10–50 Reference Guide

CONTROL Reports

The following example illustrates how tags appear on a report.

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMCTL TAG
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:
 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 BROWN 123.45
 ZIP TOTAL 802.35

 JONES IL 60077 543.21
 JONES 98.76
 ZIP TOTAL 641.97

 STATE TOTAL 1444.32

 SMITH TX 75218 666.66
 SMITH 111.11
 ZIP TOTAL 777.77

 STATE TOTAL 777.77

 FINAL TOTAL 2222.09

DTLCOPY

When printing control reports (particularly a summary report) you can include
detail information in total lines. Normally, only control field values and
associated totals are printed on total lines. The DTLCOPY subparameter of
SUMCTL causes detail field contents (values just prior to the break) to be printed
on total lines.

Report Processing 10–51

CONTROL Reports

The following example illustrates the use of DTLCOPY.

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32
 SMITH TX 75218 777.77
 TX 777.77

 2222.09

10–52 Reference Guide

CONTROL Reports

DTLCOPYALL

DTLCOPYALL has the same effect as DTLCOPY except that the detail fields are
printed for all control break totals. The following example illustrates the use of
DTLCOPYALL.

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPYALL
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876

Control Field Values in Titles

Occasionally, you may want to print control field values in report titles. For
example, you can use control field annotation within the title of a report to
emphasize the structure of an organization, particularly at its higher levels. This
technique uses only basic report facilities, and does not require special
parameters.

JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.35
 JONES IL 1444.32
 SMITH TX 75218 777.77
 SMITH TX 777.77

 SMITH TX 2222.09

Report Processing 10–53

CONTROL Reports

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

11/23/86 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32

 11/23/86 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET

 SMITH TX 75218 777.77
 TX 777.77
 2222.09

10–54 Reference Guide

CONTROL Reports

Overflow of Total Values

In control reports, line items for totaled fields define an area not only for detail
lines, but also for corresponding total lines. Since totals are normally larger than
the detail, you need a means of expanding the item area. Without this expansion,
the item area might be too small to contain the totals. If your report contains this
overflow condition, it is automatically depicted by setting the right-most
character of the item area byte to an * (asterisk character), as the following
example illustrates.

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
*
JOB INPUT FILE1 NAME MYPROG
*
 PRINT REPORT1
*
REPORT REPORT1 SUMSPACE 0 +
 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Report Processing 10–55

CONTROL Reports

Produce:

10–56 Reference Guide

 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 444.32* <--overflow

 2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 222.09* <--overflow

Controlling Overflow

You can control this overflow through two methods:

1. Ensure that the detail field being totaled is large enough to absorb the totals.
The following example illustrates how overflow can be prevented by
effectively expanding the line item to six digit positions.

Statements:

 FILE FILE1 CARD
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 T-PAY-NET W 6 N 2 HEADING ('PAY-NET')
 *
 JOB INPUT FILE1 NAME MYPROG
 T-PAY-NET = PAY-NET
 PRINT REPORT1
 *
 REPORT REPORT1 SUMSPACE 0 +
 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP T-PAY-NET
 END
 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876

CONTROL Reports

Produce:

2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 1,444.32

 2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 2222.09

2. Expand the item area by using the SUMSPACE parameter of the REPORT
statement. The value of SUMSPACE is added to the basic length of total
fields to determine an adjusted line item length. The resulting line item
expansion is illustrated in the following example as a print edit mask.

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2 .* (999.99- mask without SUMSPACE specified)
*
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 SUMSPACE 1 +
 SUMCTL HIAR LINESIZE 65
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Report Processing 10–57

CONTROL Reports

Produce:

 2/11/87 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 BROWN 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 JONES 98.76
 IL 60077 641.97

 IL 1444.32 (9999.99- mask
 with SUMSPACE 1)

 2/11/87 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 SMITH 111.11
 TX 75218 777.77

 TX 777.77

 2222.09 (9999.99- mask
 with SUMSPACE 1)

Summary File

A summary file, which contains all the control and summed field values at each
minor break, can be optionally generated during processing of a control report.
JOB activities in your program can subsequently process the summary file to
provide reports not otherwise available using the standard report facilities.

You can request the summary file by defining the file in the library and then
referencing it through the REPORT SUMFILE parameter.

The FILE statement must contain the filename, record format, logical record
length, and blocksize. For most purposes, you should specify the file as an
unblocked VIRTUAL file. The record format can be any standard format. The
record length must be large enough to contain the data that is output. Blocksize
should be appropriate for the specified format and record length.

The summary file record contains three parts (see the example under the topic
CONTROL Reports, earlier in this chapter):

1. Control field area

2. TALLY

3. Summed field area

10–58 Reference Guide

The control field area is a concatenation of the control fields specified on the
CONTROL statement. The sum of the lengths of the control fields defines the
length of the control field area.

CONTROL Reports

TALLY is a 10-byte field.

Report Processing 10–59

 IL 60077 2 641.97
 IL 60076 2 802.35
 TX 75218 2 777.77

The summed fields are concatenated to form the remaining segment of the
summary file record. Each summed field is a 10-byte packed field with the same
decimal specification as the source field.

Therefore, the summary file record length is the sum of the control field area
length, plus 10 bytes for TALLY, plus 10 times the number of summed fields.

The following example illustrates the use of SUMFILE data. The values of SFILE
are listed in order of ascending magnitude within SFILE-STATE, without
reprocessing the original data:

Statements:

 FILE FILE1 CARD
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 FILE SFILE F(30)
 SFILE-STATE 1 2 A
 SFILE-ZIP 3 5 N
 SFILE-TALLY 8 10 P 0
 SFILE-PAY-NET 18 10 P 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMFILE SFILE SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 JOB INPUT SFILE NAME MYPROG2
 PRINT REPORT2
 *
 REPORT REPORT2 NOADJUST
 SEQUENCE SFILE-STATE SFILE-PAY-NET
 LINE 01 SFILE-STATE SFILE-ZIP +
 SFILE-TALLY SFILE-PAY-NET

 END
 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

 Produce:

 SFILE-STATE SFILE-ZIP SFILE-TALLY SFILE-PAY-NET

Report Procedures

Report Procedures
Although REPORT statements meet the vast majority of all report requirements,
some reports depend upon special data manipulation. Report procedures are
asynchronous routines that facilitate this requirement.

Code report procedures at the end of their associated report. The report
processor invokes special-name procedures (such as BEFORE-LINE or
AFTER-BREAK) as required.

Coding Techniques

Coding report procedures is the same as coding procedures within JOB activities,
with the following exceptions:

■ You cannot use the following input/output generating statements:
DLI
GET
IDMS
POINT
PRINT
PUT
READ
SQL
WRITE

■ You cannot use the STOP statement.

■ Use the DISPLAY statement to perform special report annotations. Use of
DISPLAY requires the following extra considerations:

- You cannot code the DISPLAY statement's filename-1 parameter.
DISPLAY is only to the associated report.

- You cannot code the HEX option of DISPLAY.

- DISPLAY lines are counted and included in the end-of-page
determination. However, the ENDPAGE procedure is not invoked by
these lines.

Field Reference

In report procedures, you can reference any field contained in an active file or in
working storage. When control or total fields are referenced, an automatic
adjustment is made so that SUMFILE data is used. This assures access to the field
actually used in the report.

10–60 Reference Guide

Report Procedures

LEVEL

Report Processing 10–61

ZZZ
AAA

LEVEL is a system-defined field provided for control reports. The field is
defined as a two-byte binary field. The value in LEVEL indicates the control
break level and varies from 0 to 'n + 1' where:

■ LEVEL = 0 when processing detail lines

■ LEVEL = n for total line processing at each control level

■ LEVEL = n + 1 when processing FINAL totals.

Static Working Storage

Fields contained in S storage example unique properties during report
processing. S fields are stored in a static working storage area and are not copied
onto report work files. All references to S fields occur at the time the report is
actually formatted and printed. Remember, the format and print operation can
occur at one of two different times; either immediately upon execution of the
PRINT statement or after the processing of work files. With this in mind, you
should use S storage fields for:

■ Temporary work fields for report procedures

■ Line annotations controlled from report procedures

■ Grand total values from which you can calculate percentages.

The following example illustrates the use of S fields versus W fields:

**** NOTE: ***
**** W FIELDS CONTAIN THEIR VALUE AT TIME OF ***
**** PRINT STATEMENT. ***
**** S FIELDS CONTAIN THE LAST VALUE PLACED ***
**** IN THE FIELD. ***

FILE FILEA CARD
KEY 1 3 A
SFLD S 1 A
WFLD W 1 A
JOB INPUT FILEA NAME MYPROG
 IF RECORD-COUNT = 1
 SFLD = 'A'
 WFLD = 'A'
 END-IF
 IF RECORD-COUNT = 2
 SFLD = 'B'
 WFLD = 'B'
 END-IF
 PRINT RPT
*
REPORT RPT LINESIZE 65
 SEQUENCE KEY
 LINE KEY SFLD WFLD
END

Report Procedures

Produce:

10–62 Reference Guide

of the report after each line is printed.

 KEY SFLD WFLD
 AAA B B
 ZZZ B A

In the preceding example, note that the value assigned to SFLD for record
number one (KEY = ZZZ) was 'A' but the report shows its value as 'B'. This
occurs because S fields, as previously mentioned, are static working storage
fields that are not spooled out to work files. The value of an S field when printed,
is the last value assigned (calculated) to it. The following example helps to
illustrate where SFLD and WFLD got their values in the previous example:

In the previous example, two records were read and printed in a sequenced
report that resulted in the data being written to an intermediary spool file prior
to sequencing. As shown in the previous diagram, the value for SFLD is not
written to the spool file (unlike the value for WFLD). When the report is printed,
the LINE statement retrieves its value for SFLD from working storage, but
receives its value for WFLD from the spool file.

Special-name Report Procedures

Report procedures are invoked at specific points of the report processing
activity. By analyzing these points, you can determine the specific use of the
various procedures. The following example illustrates the following procedures:

REPORT-INPUT—final screening of report input data. Report data can be
selected and/or modified.

BEFORE-LINE—detail line has been created but not yet printed. Typical use is
to annotate the body of the report before line printing. Detail line data
cannot be modified when display-page-size is zero. To modify detail line
data, change display-page-size to a value larger than zero.

AFTER-LINE—detail line has been printed. Typical use is to annotate the body

Report Procedures

BEFORE-BREAK—modification of totals before total line printing. Typical use is

Report Processing 10–63

cause the data to continue into report processing, you must execute a SELECT
statement for the associated input data. In other words, input that does not get
SELECTed is bypassed for continued processing.

to calculate averages on control reports.

AFTER-BREAK— total line has been printed. Typical use is special annotation
following total lines on control reports.

ENDPAGE—at end-of-page body. This procedure can be used to produce
footers on each page of the report.

TERMINATION—at end-of-report. Produce end-of-report information such as
hash or other control totals.

 (REPORT-INPUT)<---(caused by the first PRINT statement)

 5/18/84 PROCEDURE USAGE PAGE 1

 STATE ZIP PAY-NET

 (BEFORE-LINE)
detail IL 60076 678.90
 (AFTER-LINE)

 (REPORT-INPUT)<---(caused by the second PRINT statement)
 (BEFORE-LINE)
detail IL 60076 123.45
 (AFTER-LINE)

 (REPORT-INPUT)<---(caused by the third PRINT statement)
 (BEFORE-BREAK)
total IL 60076 802.35
 (AFTER-BREAK)

 (BEFORE-LINE)
detail IL 60077 543.21
 (AFTER-LINE)
 (REPORT-INPUT)<---(caused by the fourth PRINT statement)

 (BEFORE-LINE)
detail IL 60077 98.76
 (AFTER-LINE)

 (REPORT-INPUT)<---(caused by the fifth PRINT statement)
 (BEFORE-BREAK)
total IL 60077 641.97
 (AFTER-BREAK)

 (BEFORE-BREAK)
total IL 1444.32
 (AFTER-BREAK)
 ...
 ...
 (ENDPAGE)

REPORT-INPUT

A REPORT-INPUT procedure selects and/or modifies report input data. This
procedure is performed for each PRINT statement (report input). In order to

Report Procedures

When the report data has been spooled (because the report had been

10–64 Reference Guide

 1888.77

SEQUENCEd or the printer file had been in use), the REPORT-INPUT procedure
is invoked as each spooled record is read to produce this report.

Although you can code the logic within the JOB activity itself, it is occasionally
desirable to place the logic in a REPORT-INPUT procedure. The following
example illustrates use of the REPORT-INPUT procedure in final report input
selection. Only the first record within each ZIP code is selected.

Statements:

FILE FILE1 CARD FB(80 8000)
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
HOLD-ZIP S 5 N VALUE 00000
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
REPORT-INPUT. PROC
 IF ZIP NE HOLD-ZIP
 HOLD-ZIP = ZIP
 SELECT
 END-IF
END-PROC
*
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

 11/23/86 REPORT FOR THE STATE OF IL PAGE 1

 LAST-NAME STATE ZIP PAY-NET
 BROWN IL 60076 678.90
 JONES IL 60077 543.21
 IL 1222.11

 11/23/86 REPORT FOR THE STATE OF TX PAGE 2

 LAST-NAME STATE ZIP PAY-NET
 SMITH TX 75218 666.66
 TX 666.66

Report Procedures

BEFORE-LINE and AFTER-LINE

A BEFORE-LINE procedure is invoked immediately before, and an AFTER-LINE
procedure immediately following, the printing of each detail line.

When the display-page-size is greater than zero, the BEFORE-LINE procedure is
executed, then the detail line is built. When the display-page-size is zero, the
detail line for the report is already built, then the BEFORE-LINE procedure is
executed. The second circumstance does not allow you to modify the contents of
the detail line with the BEFORE-LINE procedure.

A BEFORE-LINE/AFTER-LINE procedure is commonly used to print an
annotation before/after a detail line on the report.

The following example illustrates how an AFTER-LINE procedure can cause
information to be printed following a detail line of a report:

Statements:

FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
AFTER-LINE. PROC
 IF PAY-NET GE 500
 DISPLAY '* EMPLOYEE ' LAST-NAME ' +
 EXCEEDED WEEKLY SALARY GOAL *'
 END-IF
END-PROC
*
END

BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Report Processing 10–65

Report Procedures

Produce:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 678.90
 * EMPLOYEE BROWN EXCEEDED WEEKLY SALARY GOAL *
 BROWN IL 60076 123.45
 IL 60076 802.35

 JONES IL 60077 543.21
 * EMPLOYEE JONES EXCEEDED WEEKLY SALARY GOAL *
 JONES IL 60077 98.76
 IL 60077 641.97

 IL 1444.32

 SMITH TX 75218 666.66
 * EMPLOYEE SMITH EXCEEDED WEEKLY SALARY GOAL *
 SMITH TX 75218 111.11
 TX 75218 777.77

 TX 777.77

 2222.09

10–66 Reference Guide

Report Procedures

BEFORE-BREAK

A BEFORE-BREAK procedure can be used to calculate percentages and average
totals. These values must be calculated immediately before printing.

The grand-total for percentage and average calculations is often maintained in S
storage. TALLY is typically used as the number of items when calculating
averages. The value of LEVEL (a system-defined field) can be used to determine
which control break is being processed. Consider the following percentage
calculation, paying special attention to when and how PERCENT is calculated:
FILE FILE1 CARD FB(80 8000)
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
*
PERCENT W 2 N 2
TOTAL-NET S 8 N 2
*
JOB INPUT FILE1 NAME MYPROG
*
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 80 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET PERCENT
*
BEFORE-BREAK. PROC
 PERCENT = PAY-NET * 100 / TOTAL-NET
END-PROC
*
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Produce:

LAST-NAME STATE ZIP PAY-NET PERCENT

 BROWN IL 60076 802.35 36.10
 JONES IL 60077 641.97 28.89
 IL 1444.32 64.99

 SMITH TX 75218 777.77 35.00
 TX 777.77 35.00

 2222.09 100.00

Report Processing 10–67

Report Procedures

AFTER-BREAK

An AFTER-BREAK procedure can be used to produce special annotation on
control reports. The value of LEVEL (a system-defined field) can be used to
determine which control break is being processed. In the following example, the
total line for the control field STATE receives special annotation:

Statements:

 FILE FILE1 CARD
 LAST-NAME 1 5 A
 STATE 6 2 A
 ZIP 8 5 N
 PAY-NET 13 5 N 2
 JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
 *
 REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
 *
 AFTER-BREAK. PROC
 IF LEVEL EQ 2
 DISPLAY 'TOTALS FOR THE STATE OF ' STATE
 END-IF
 END-PROC
 *
 END
 BROWNIL6007612345
 BROWNIL6007667890
 JONESIL6007709876
 JONESIL6007754321
 SMITHTX7521811111
 SMITHTX7521866666

Produce:

 LAST-NAME STATE ZIP PAY-NET

 BROWN IL 60076 802.35
 JONES IL 60077 641.97
 IL 1444.32
TOTALS FOR THE STATE OF IL

 SMITH TX 75218 777.77
 TX 777.77
TOTALS FOR THE STATE OF TX
 2222.09

10–68 Reference Guide

Report Procedures

ENDPAGE

An ENDPAGE procedure can be used to produce page footing information. It is
invoked whenever end-of-page is detected. It is typically used to produce page
totals or other annotations, as in the following example of page footer
annotation:
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
 ENDPAGE. PROC
 DISPLAY SKIP 2 '* CONFIDENTIAL - FOR INTERNAL USE ONLY *'
END-PROC
*
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

Report Processing 10–69

Report Procedures

TERMINATION

A TERMINATION procedure is invoked at the end of the report. This procedure
can be used to print report footing information, including control totals and
distribution information. The following example is an example of report footing:
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
TOTAL-NET S 8 N 2
JOB INPUT FILE1 NAME MYPROG
 TOTAL-NET = TOTAL-NET + PAY-NET
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
TERMINATION. PROC
 DISPLAY NEWPAGE
 DISPLAY SKIP 5 TOTAL-NET 'IS THE Y-T-D COMPANY NET PAY'
 DISPLAY SKIP 5 'PLEASE ROUTE THIS REPORT TO CORPORATE OFFICERS'
END-PROC
*
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

10–70 Reference Guide

Report Work Files

Report Work Files
Work files are dynamically created to temporarily store report information
whenever:

■ The report is sequenced using the SEQUENCE statement

■ The report's printer file is already allocated to a previous report within the
same job activity

Each work file record contains all of the data required to produce the report. The
PRINT statements generate the work file. The order of occurrence of work file
fields is the same as the field's reference occurrence in the REPORT statements.
In the following example, the underlined fields determine work file record
contents:
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65 +
 DTLCTL EVERY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE ZIP
 LINE 01 LAST-NAME STATE ZIP PAY-NET
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

The DEBUG (DMAP) option automatically documents the contents of work files.
This option causes a data map of the work file to be displayed. (See

Report Processing 10–71

Routing Printed Output

DMAP in the “System Facilities” chapter.)

By default, work files are written to the system work file, xxxVFM (where xxx is
the value of WKDSNPF in the Options Table). See the “Options Table” appendix
for more information on this option. The algorithm for naming work files is
xxxRnnn, where xxx is the value of the WKDSNPF option and nnn is the
sequential number of the report within the job activity. A typical work filename
for the first work file in a JOB is EZTR001.

You can save the work file contents for future processing by coding the FILE
parameter on the REPORT statement. The corresponding FILE statement, coded
in the library, must identify a SAM file. Also, you must specify that the work
file's record length is at least as long as the dynamically created work file record.
Records should be blocked to a reasonable value to ensure efficient processing.

Routing Printed Output
You can route reports to any printer. By default, the system output printer is
used (SYSPRINT for OS/390 and z/OS, or SYSLST for VSE). You can also route
reports to any personal computer connected to CA-Corporate Tie. However,
since most operating systems support multiple logical printers (spool files), you
can realize significant performance improvements, if there is no SEQUENCE
specified, by routing each output to a different logical printer.

10–72 Reference Guide

Routing Printed Output

Use the PRINTER parameter of the REPORT statement to route the printed
report. The filenamed by this parameter corresponds to a library defined file.
The FILE statement used to define the file must have the PRINTER option. To
route the printed report to a PC using a CA-Corporate Tie Host Disk, add the
Host Disk options to the FILE statement. The FORMAT option must be PRN.
Additional Host Disk File information is in the “File Processing” chapter. Unless
otherwise designated, the record length of these files defaults based on the
LINESIZ option. The following example illustrates a program that takes
advantage of print routing:
FILE PRINTR1 PRINTER F(121)
FILE PRINTR2 PRINTER F(251)
FILE FILE1 CARD
LAST-NAME 1 5 A
STATE 6 2 A
ZIP 8 5 N
PAY-NET 13 5 N 2
JOB INPUT FILE1 NAME MYPROG
 IF ZIP EQ 60076, 60077
 PRINT REPORT1
 ELSE
 PRINT REPORT2
 END-IF

*
REPORT REPORT1 PRINTER PRINTR1 LINESIZE 120 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
REPORT REPORT2 PRINTER PRINTR2 LINESIZE 250 +
 SUMMARY SUMCTL DTLCOPY
 SEQUENCE STATE ZIP LAST-NAME
 CONTROL STATE NEWPAGE ZIP
 TITLE 'REPORT FOR THE STATE OF' STATE
 LINE 01 LAST-NAME STATE ZIP PAY-NET
*
END
BROWNIL6007612345
BROWNIL6007667890
JONESIL6007709876
JONESIL6007754321
SMITHTX7521811111
SMITHTX7521866666

This facility is an efficient way to separate output to different printer form types
such as standard paper, labels, or pre-printed forms. Also, it can be used to
create a report with a linesize larger than is permitted in the Options Table.

Report Processing 10–73

Chapter

11 File Processing

CA-Easytrieve Plus contains all the facilities necessary to process any file or
database. Capabilities range from simple automatic input processing to complex
controlled database maintenance.

CA-Easytrieve Plus processes SAM, ISAM, VSAM, IMS/DLI, and CA-IDMS
database files, CA-Corporate Tie Host Disk, and CA-Easytrieve Plus virtual
(VFM) files. User-written exit programs support all other filetypes.

This chapter describes file processing of sequential, random, and Host Disk files.
Other chapters or guides discuss SQL, and special-case processes, such as
PRINTER, TABLE, IMS/DLI databases, CA-IDMS databases, and file exits. See
the index for page references on these processes or to the database interface
option guide for the database interface you are using.

Control of Input/Output
File input can be either automatic or controlled.

JOB and SORT statements designate automatic input. SORT and the SUMFILE
parameter of REPORT (discussed in the “Report Processing” chapter) are the
only automatic output functions. All other output is under programmer control.

Input and output statements (GET, POINT, PUT, READ, and WRITE) enable
controlled processing. You can code these statements in a JOB activity, with or
without automatic input.

File Processing 11–1

Data Access Modes

Automatic and controlled file processing interact according to the following
rules:

1. Controlled statements are not permitted in SORT or REPORT procedures.

2. The GET statement cannot reference an automatic input file in the same JOB.

3. Controlled statements are not normally valid for automatic input files in the
JOB activity, except as permitted by the following exceptions:

- The POINT statement can be used with automatic input for VSAM and
ISAM files. This interaction permits skip-sequential input processing
while under system control.

- The PUT and WRITE statements can be used with automatic input of a
VSAM file, except when using synchronized file processing.

Data Access Modes
CA-Easytrieve Plus uses one of two data access modes, depending on the type of
file activity being performed:

1. In LOCATE mode, the logical record is accessed in the buffer area. This
access mode is used whenever possible, because it is the most efficient.

Record Format

■ Variable-length

■ Undefined-length.

Fixed-length and variable-length records can be blocked.

Regardless of the record format chosen, all formats must adhere to the standards
established for processing by IBM input/output control system routines. Those
records that deviate from the standards for fixed-length or variable-length
records can be processed only as undefined-length records.

2. In MOVE mode, the logical record is moved from the buffer into a work
area. This mode is used whenever LOCATE mode is impractical (such as in
the case of VSAM file update), or when WORKAREA is coded on the FILE
statement.

File records must be in one of three formats:

■ Fixed-length

11–2 Reference Guide

Record Addressability

CARD, PUNCH, and VSAM

The following assumptions are made about the format of CARD, PUNCH, and
VSAM files:

1. CARD and PUNCH file records are always a fixed length; 80 characters long
in OS/390 and z/OS, and 81 characters long in VSE.

2. VSAM records have undefined length.

When producing variable-length or undefined-length records, the length of the
output record is controlled by the current contents of the output file's
RECORD-LENGTH field. Unless otherwise specified, all records created by
CA-Easytrieve Plus have a maximum data length based on the file's record-size
attributes.

Record Addressability
The address of a record points to the first data byte of the record. The
record-control-word of variable-length records is accessible only through the
system-defined RECORD-LENGTH field.

System-Defined File Fields
The following special data fields are automatically provided for each of your
files.

These fields are stored as part of working storage but can be qualified by
filename. As working storage fields, they are not subject to invalid file reference
errors.

1. RECORD-LENGTH – a two-byte binary field used for all filetypes to
determine or establish the length of the current data record. For
variable-length records, this field contains only the length of the record's
data. That is, the field is automatically adjusted to account for the four-byte
record-control-word and four-byte block-control-word. For variable-length
files, assign the length of the record to the RECORD-LENGTH field before
the PUT or WRITE statement is executed.

2. RECORD-COUNT – a read-only four-byte binary field that contains the
number of logical I/O operations performed to the file.

File Processing 11–3

Error Conditions

3. FILE-STATUS – a read-only field that contains the results of the most recent

11–4 Reference Guide

FLDCHK option is in effect.

I/O operation on a file.

 Note: When using multiple files, you should qualify FILE-STATUS.

- For DOS/ISAM files, the one-byte binary field is set to the contents of
the DTF field filenameC, described in the IBM DOS Supervisor and I/O
Macro Manual.

- For OS/ISAM files, the two-byte binary field is set to the contents of the
one-byte binary DCB fields, DCBEXCD1 and DCBEXCD2, described in
the IBM OS Data Management Macro Instructions Manual. DCBEXCD1 is
the left-most field of FILE-STATUS.

- For VSAM files, the four-byte binary field is set to the VSAM reason
code value, RPLERRCD, when the return code, RPLRTNCD, is non-zero,
as described in the IBM VSAM Programmer's Guide.

- For IMS/DLI files, the two-byte field is set to the value contained in
bytes 11 and 12 of the PCB, following each call issued to IMS/DLI.

- For SQL files, the four-byte binary field is set to the value contained in
SQLCODE.

4. CHKP-STATUS – a read-only two-byte field that is set to the value contained
in bytes 11 and 12 of the I/O PCB following each DLI CHKP and DLI XRST
call.

Error Conditions
Error conditions that arise during file processing activities generally fall into one
of three categories:

1. File OPEN errors – commonly caused by incorrect or missing JCL
information. The operating system generally detects these errors and
terminates CA-Easytrieve Plus processing, except for the following
conditions.

– If a file is empty, processing continues with the END-OF-FILE routines.

– For VSAM files, if the NOVERIFY parameter is used on the FILE
statement, the VSAM open error code 116(X'74) is ignored.

 Note: This does not apply to files that specify UPDATE on the FILE
statement.

2. Invalid file reference errors – caused by statements that refer to data from a
file that does not have a current record (for example, after end-of-file or
record not found). A diagnostic message is issued for these errors when the

Data Availability Tests

3. Improper handling of nonzero STATUS conditions returned from statements
such as READ. You are responsible for correctly handling these conditions.
(See the previous topic, System-Defined File Fields, for information on
FILE-STATUS.)

Data Availability Tests
Conditional expressions are provided to assist you in resolving questions of data
availability or currency. You can test these conditions after GET, POINT, READ,
and WRITE statements and in association with synchronized file processing. The
use of these conditionals is described later in this chapter. A full description of
conditional statements appears in the “Decision and Branching Logic” chapter.

Opening and Closing Files
During the initiation of a JOB or SORT activity, all files used in the activity are
opened (except for those specified with the DEFER parameter). DEFERed files
are opened when the first input/output statement is issued for them.

As part of the file-opening process, the following tasks are performed as needed:

■ Validates block length for disk devices

■ Sets the FULLTRK value

■ Allocates buffer areas

■ Allocates work areas

■ Loads user exit programs.

All opened files are closed at the end of each activity. This establishes output
files, for which no PUT was issued, as null files unless DEFER is coded.

SAM Files
Sequential Access Method (SAM) files are processed according to the following
rules:

1. You cannot process the same SAM file as both an input and an output file
within the same activity.

File Processing 11–5

2. You can create SAM files in one activity and process them by subsequent
activities.

SAM Files

3. Only one CARD file is permitted in a program.

SAM Input

CA-Easytrieve Plus provides both automatic and controlled processing of SAM
files. The following examples illustrate how to process a SAM file using each
facility.

Automatic Processing
FILE SEQFILE FB(150 1800)
%PERSNL
JOB INPUT SEQFILE NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 LINE EMP# NAME

Controlled Processing
FILE SEQFILE FB(150 1800)
%PERSNL
JOB INPUT NULL NAME MYPROG
 GET SEQFILE
 IF EOF SEQFILE
 STOP
 END-IF
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 LINE EMP# NAME

Card Input

You can process one of the input files through the system input stream (SYSIN
for OS/390 and z/OS, SYSIPT for VSE). “Execution only” card input is simply
placed in the system input stream. When the mode of operation is syntax check,
compile, and execute (the default), an END record must be placed between the
source statements and the card data.
FILE CARDFILE CARD
FIELD 1 5 A
JOB INPUT CARDFILE NAME MYPROG
 DISPLAY FIELD
END
CARD1
CARD2
CARD3
CARD4
CARD5

11–6 Reference Guide

SAM Files

SAM Output

You can create output files under programmer control with the PUT statement.

Fixed-Length File Creation
FILE INFILE
FIELD 1 5 A
FILE OUTFILE FB(100 500)
FIELD 1 5 A
JOB INPUT INFILE NAME MYPROG
 PUT OUTFILE FROM INFILE

Variable-Length File Creation

Variable-Length SAM File Creation with Value
FILE CARDFILE CARD
FIELD 1 5 A
FILE OUTFILE VB(100 504)
FIELD 1 5 A
JOB INPUT CARDFILE NAME MYPROG
 OUTFILE:RECORD-LENGTH = 5
 PUT OUTFILE FROM CARDFILE
END
CARD1
CARD2
CARD3
CARD4
CARD5

Variable-Length SAM File Creation with Record-Length
FILE INFILE VB(100 504)
FIELD 1 5 A
FILE OUTFILE VB(100 504)
FIELD 1 5 A
JOB INPUT INFILE NAME MYPROG
 OUTFILE:RECORD-LENGTH = INFILE:RECORD-LENGTH
 PUT OUTFILE FROM INFILE

Note: In the previous examples the actual record-length is 96 bytes plus the
4-byte RDW. The records are blocked at 5 for a value of 500 plus the extra 4 bytes
for the BDW.

File Processing 11–7

ISAM Files

PUNCH Files

In a VSE environment, a PUNCH file is a special case of a SAM output file.
Because the operating system has device-dependent constraints, PUNCH files
require special consideration under VSE. You must specify the PUNCH
parameter on the FILE statement to output records to the card punch.

Except for the PUNCH parameter, PUNCH files are treated the same as any
other 80-byte SAM file. The following example illustrates PUNCH file output:
FILE CARDFILE CARD
FIELD 1 5 A
FILE OUTFILE PUNCH
FIELD 1 5 A
JOB INPUT CARDFILE NAME MYPROG
 PUT OUTFILE FROM CARDFILE
END
CARD1
CARD2
CARD3
CARD4
CARD5

No consideration for files assigned to a card punch is required in OS/390 and
z/OS due to device independence. Simply define an output SAM file as
fixed-length 80 characters and assign it to the proper SYSOUT class using the DD
card.

ISAM Files
Indexed Sequential (ISAM) files are processed as input only files. You can use
sequential, skip-sequential, or random file processing. Sequential processing can
be under the control of either the system or the programmer. Random processing
is always under programmer control.

Automatic Processing

ISAM Sequential Input under Automatic Control
FILE ISAM IS
%PERSNL
JOB INPUT ISAM NAME MYPROG
 DISPLAY NAME

11–8 Reference Guide

ISAM Files

ISAM Sequential Input with a Starting Record

File Processing 11–9

*
REPORT REPORT1 LINESIZE 65
LINE EMP# NAME

FILE ISAM IS
%PERSNL
JOB INPUT ISAM NAME MYPROG START POINT-PROC
 DISPLAY EMP# ' ' NAME
*
POINT-PROC. PROC
 POINT ISAM EQ '02200' STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ', ISAM:FILE-STATUS
 STOP
 END-IF
END-PROC

Controlled Processing
FILE ISAM IS
%PERSNL
JOB INPUT NULL NAME MYPROG
 GET ISAM
 IF EOF ISAM
 STOP
 END-IF
 IF ISAM:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' FILE-STATUS
 GOTO JOB
 END-IF
 PRINT REPORT1
*
REPORT REPORT1 LINESIZE 65
 LINE EMP# NAME

Skip-Sequential Processing
FILE ISAM IS
%PERSNL
JOB INPUT NULL NAME MYPROG
 GET ISAM STATUS
 IF EOF ISAM
 STOP
 END-IF
 IF ISAM:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' FILE-STATUS
 GOTO JOB
 END-IF
 IF EMP# EQ 1000 THRU 1999
 PERFORM POINT-ISAM
 GOTO JOB
 END-IF
 PRINT REPORT1
*
POINT-ISAM. PROC
 POINT ISAM GE '02000' STATUS
 IF ISAM:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' FILE-STATUS
 END-IF
END-PROC

VSAM Files

Random Processing
* MVS VERSION *
 FILE ISAMRAN IS
%PERSNL
FILE INKEYS CARD
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ ISAMRAN KEY WHO
 IF FILE-STATUS EQ X'8000'
 DISPLAY 'BAD KEY =' +1 WHO
 GOTO JOB
 END-IF
 DISPLAY SKIP 2 HEX ISAMRAN
END
01963
01730
03571
90909
--
* VSE VERSION *

FILE ISAMRAN IS
%PERSNL
FILE INKEYS CARD
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ ISAMRAN KEY WHO
 IF FILE-STATUS EQ X'10'
 DISPLAY 'BAD KEY =' +1 WHO
 GOTO JOB
 END-IF
 DISPLAY SKIP 2 HEX ISAMRAN
END
01963
01730
03571
90909

VSAM Files
Both sequential and random (direct) processing of VSAM files is supported. The
VSAM file organizations are:

■ ESDS (entry-sequenced data sets)

■ KSDS (key-sequenced data sets)

■ RRDS (relative-record data sets).

11–10 Reference Guide

VSAM Files

File Creation

The FILE statement and the PUT statement are used to create (load) files. You
can reference a newly created file in subsequent activities by coding another
FILE statement with a different filename, but whose JCL points to the same
physical file. The following example illustrates reloading a fixed-length ESDS.
You can create KSDS and RRDS files using a similar technique, although the
FILE statement is somewhat altered. The data set must be defined as reusable to
use the RESET option on the FILE statement.
FILE ESDS VS (ES F CREATE RESET)
%PERSNL
FILE PERSNL FB(150 1800)
COPY ESDS
JOB INPUT PERSNL NAME MYPROG
 PUT ESDS FROM PERSNL STATUS
 IF ESDS:FILE-STATUS NE 0
 DISPLAY 'LOAD ERROR STATUS= ' ESDS:FILE-STATUS
 STOP
 END-IF

Note: When using multiple files, you should qualify FILE-STATUS. The
previous example shows ESDS:FILE-STATUS.

VSAM Input

VSAM sequential input files are processed automatically or under
programmer-control. The following examples illustrate how to process a VSAM
file using each facility.

Note: The feature of opening VSAM and receiving a return code of 16 does not
apply when UPDATE is specified on the FILE statement.

Automatic Processing

VSAM Sequential Input under Automatic Control
FILE ESDS VS (ES F)
%PERSNL
JOB INPUT ESDS NAME MYPROG
 DISPLAY EMP# ' ' NAME

File Processing 11–11

VSAM Files

VSAM Sequential Input with a Starting Record
FILE KSDS VS
%PERSNL
JOB INPUT KSDS NAME MYPROG START POINT-PROC
 DISPLAY EMP# ' ' NAME
POINT-PROC. PROC
 POINT KSDS EQ '12318' STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ', KSDS:FILE-STATUS
 STOP
 END-IF
END-PROC

Controlled Processing
FILE ESDS VS (ES F)
%PERSNL
JOB INPUT NULL NAME MYPROG
 GET ESDS STATUS
 IF EOF ESDS
 STOP
 END-IF
 IF ESDS:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' ESDS:FILE-STATUS
 GOTO JOB
 END-IF
 DISPLAY EMP# ' ' NAME

Skip-Sequential Processing

Skip-sequential processing is accomplished by using the POINT statement with
normal sequential processing.
FILE VSAM VS
%PERSNL
JOB INPUT VSAM NAME MYPROG
 IF EMP# EQ 1000 THRU 1999
 PERFORM POINT-VSAM
 GOTO JOB
 END-IF
 PRINT REPORT1
*
POINT-VSAM. PROC
 POINT VSAM GE '02000' STATUS
 IF VSAM:FILE-STATUS NE 0
 DISPLAY 'FILE-STATUS= ' FILE-STATUS
 END-IF
END-PROC
*
REPORT REPORT1 LINESIZE 65
 LINE EMP# NAME

11–12 Reference Guide

VSAM Files

Random Input

File Processing 11–13

 IF VSAMRAN:FILE-STATUS NE 0
 DISPLAY FAILKEYS 'FAIL KEY =' +1 WHO
 GOTO JOB
 END-IF

KSDS and RRDS files can be input randomly (directly) by the READ statement.
FILE BADKEYS FB(150 1800) PRINTER
FILE VSAMRAN VS
%PERSNL
FILE INKEYS CARD
WHO * 5 N
JOB INPUT INKEYS NAME MYPROG
 READ VSAMRAN KEY WHO STATUS
 IF FILE-STATUS EQ 16
 DISPLAY BADKEYS 'BAD KEY =' +1 WHO
 GOTO JOB
 END-IF
 DISPLAY SKIP 2 HEX VSAMRAN
END
01963
01730
03571
90909

Note: A key field for an RRDS file is defined as a four-byte binary field.

VSAM Record Addition

You can use the WRITE statement to add records to any established VSAM file.
The WRITE statement adds a single record to the file, but to take advantage of
VSAM’s mass-sequential-insertion capabilities, you should use the PUT
statement to add many records to the same place in the file.

If you use the WRITE or PUT statements, you must include the UPDATE
parameter on the FILE statement. UPDATE specifies that all input records can
potentially be updated or deleted. The following examples illustrate single and
mass-insertion record addition.

Single Record Addition
FILE DUPKEYS FB(25 25) PRINTER
FILE FAILKEYS FB(25 25) PRINTER
FILE VSAMRAN VS (UPDATE)
%PERSNL
FILE INKEYS CARD
WHO * 5 N
PHONE * 10 N
JOB INPUT INKEYS NAME MYPROG
 MOVE WHO TO EMP#
 MOVE PHONE TO TELEPHONE
 WRITE VSAMRAN ADD STATUS
 IF VSAMRAN:FILE-STATUS EQ 8
 DISPLAY DUPKEYS 'DUP KEY =' +1 WHO
 GOTO JOB
 END-IF

VSAM Files

 DISPLAY SKIP 2 HEX VSAMRAN
END
666663123346591

Mass-Sequential Insertion
FILE ESDS VS (ES F)
%PERSNL
FILE PERSNL
COPY ESDS
JOB INPUT PERSNL NAME MYPROG
 PUT ESDS FROM PERSNL STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'ADD FAILED'
 DISPLAY HEX PERSNL
 STOP
 END-IF

VSAM Record Deletion

You can use the WRITE statement to delete individual records from either a
KSDS or an RRDS VSAM file. The deleted record is the file’s current input
record.
FILE KSDS VS (UPDATE)
%PERSNL
FILE KEYS CARD
WHO 1 5 N
JOB INPUT KEYS NAME MYPROG
 READ KSDS KEY WHO STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'READ FAILED...KEY= ' WHO
 STOP
 END-IF
 WRITE KSDS DELETE STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'DELETE FAILED'
 STOP
 END-IF
END
67777

VSAM Record Update

You can modify and rewrite the current VSAM input record by using the WRITE
statement.
FILE KSDS VS (UPDATE)
%PERSNL
FILE KEYS CARD
WHO 1 5 N

11–14 Reference Guide

 IF FILE-STATUS NE 0
 DISPLAY 'READ #1 FAILED...KEY= ' WHO
 STOP
 END-IF

PHONE 6 10 N
JOB INPUT KEYS NAME MYPROG
 READ KSDS KEY WHO STATUS

Virtual File Manager

 DISPLAY HEX KSDS
 MOVE PHONE TO TELEPHONE
 WRITE KSDS UPDATE STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'UPDATE FAILED...KEY= ' WHO
 STOP
 END-IF
 READ KSDS KEY WHO STATUS
 IF FILE-STATUS NE 0
 DISPLAY 'READ #2 FAILED...KEY= ' WHO
 STOP
 END-IF
 DISPLAY HEX KSDS
END
666663125059599

Virtual File Manager
Virtual File Manager (VFM) is a sequential access method designed to serve the
needs of program work files. Typically, when work files are needed within a
program, separate disk areas must be reserved for each work file. VFM,
however, maintains as much area in memory as possible. If the area in memory
is exhausted, VFM writes the excess data to a single spill area. By using VFM,
you only need to define one physical file.

As a virtual file is read back into the program, the space it occupied is released
and the area can be immediately reused. You can, however, retain VFM files for
subsequent CA-Easytrieve Plus activities.

The use of VFM is identical to SAM processing with the following extra
considerations:

■ VFM files without the RETAIN option are deleted once they are processed as
input files.

■ VFM files with the RETAIN option are deleted at the end of the associated
CA-Easytrieve Plus execution.

■ VFM files are automatically blocked.

The following example illustrates a typical use of the VFM access method:
FILE PERSNL FB(150 1800)
%PERSNL
FILE SORTFILE VIRTUAL F(150)
COPY PERSNL
SORT PERSNL TO SORTFILE USING PAY-NET NAME MYSORT
JOB INPUT SORTFILE NAME MYPROG
 PRINT REPORT1
*
REPORT REPORT1
 LINE NAME PAY-NET

File Processing 11–15

Since the file SORTFILE is a virtual file, you do not have to define it in the JCL.

Synchronized File Processing

Synchronized File Processing
The Synchronized File Processing (SFP) facility can be used with one file or
multiple files.

■ Synchronized File Input performs match/merge operations on multiple files.

■ Single File Keyed Processing compares the contents of a key field or fields
from one record to the next in a single file.

Synchronized File Input

A twofold solution helps you avoid coding complex logic for match/merge
operations:

■ Automatic input that includes a universally-adaptable match/merge
algorithm

■ Special conditional expressions that help to determine simple, yet precise file
relationships.

The synchronized file match/merge algorithm is based on the following
assumptions and rules:

■ Two or more files capable of being processed sequentially can be accessed.

■ All files involved in the operation must be in ascending order by their key
values.

■ The number of keys for each file must be identical.

■ Corresponding keys of all files must be either alphanumeric or numeric. An
alphanumeric key must be alphanumeric in all files, but can have different
lengths. A numeric key must be numeric in all files, but can have different
data types (N, P, U, B) and lengths.

■ A maximum of 23 files can be used.

■ Because the algorithm must “read ahead” to perform a match/merge,
INDEXED, RELATIVE, and SQL files cannot be updated during
synchronized file processing.

■ You can use the POINT statement to position an ISAM or VSAM file at a
record other than the first record before processing. Use a START procedure
to perform the positioning.

■ To override the default SELECT statement for an SQL file, code DEFER on
the FILE statement to defer opening the file and place the SELECT statement
in a START procedure.

11–16 Reference Guide

Synchronized File Processing

Example

File Processing 11–17

illustrative purposes.

The INPUT parameter of the JOB statement designates files and their keys for
synchronized file input. The following example illustrates a variety of
synchronized file and key combinations:
FILE FILE1 ...
 KEY1A 1 5 A
 KEY1B 6 4 P
 ...
 KEY1X ...
 ...
FILE FILE2 ...
 KEY2A 24 5 A
 KEY2B 1 2 B
 ...
 KEY2X ...
 ...
FILE FILEN ...
 KEYNA 17 5 A
 KEYNB 10 7 N
 ...
 KEYNX ...
 ...
JOB INPUT(FILE1 KEY KEY1A +
 FILE2 KEY KEY2A)
 ...
JOB INPUT (FILEN KEY(KEYNB, KEYNA) +
 FILE1 KEY(KEY1B, KEY1A) +
 FILE2 KEY(KEY2B, KEY2A))
 ...
JOB INPUT (FILE1 KEY(KEY1A ...) +
 ... +
 FILEN KEY(KEYNA ...))
 ...
 ...

Record Availability

Records from files in CA-Easytrieve Plus synchronized file input are made
available for processing based on the relationship of the files' keys. Records with
the lowest keys are made available first and the match is hierarchical based upon
the order of the files specified on the JOB statement.

Refer to the following three input files for an example of synchronized file input:
FILE1 FILE2 FILE3
 1 2 1
 2 3 A 3
 3 A 3 B 4
 3 B 4 A 5
 8 A 4 B 7
 8 B 6 8 A
 9 7 8 B

The key is the single numeric digit and the letter indicates duplicates for

Synchronized File Processing

The JOB statement to process the three files is:

11–18 Reference Guide

Plus returns to FILE1 and retrieves the next record. This time the only record
available is the second key 3 record from FILE1.

JOB INPUT (FILE1 KEY(KEY1) +
 FILE2 KEY(KEY2) +
 FILE3 KEY(KEY3)) NAME MYPROG

Duplicate key values affect record availability differently based on which file
contains the duplicates. Remember, the matching algorithm is hierarchical so the
key is exhausted on the lowest level before another record is processed from the
next higher level file.

The following example illustrates the output from the synchronized file input
process. The output shows the results of each iteration (loop) through the JOB
activity. 'N/A' under a file indicates that a record from the file is not available
and no fields from this file can be referenced during the associated iteration.

Note: Special IF statements are provided to help you determine record
availability. See “Special IF Statements” next.

Match/Merge Operation Output
 JOB FILE1 FILE2 FILE3
ITERATION RECORD RECORD RECORD
 1 1 N/A 1
 2 2 2 N/A
 3 3A 3A 3
 4 3A 3B N/A
 5 3B N/A N/A
 6 N/A 4A 4
 7 N/A 4B N/A
 8 N/A N/A 5
 9 N/A 6 N/A
 10 N/A 7 7
 11 8A N/A 8A
 12 8A N/A 8B
 13 8B N/A N/A
 14 9 N/A N/A

Refer to iterations 3 through 5 in the previous output. FILE1 and FILE2 both
contain two records with a key value of 3. FILE3 contains only one record of key
3. These records are processed as follows:

■ Iteration 3: The first record 3 from FILE1 and FILE2 and the only record with
key 3 from FILE3 are available.

■ Iteration 4: Since the next record on FILE3 is a key 4 record and there are still
key 3 records to process in the other files, FILE3's record is not available.
CA-Easytrieve Plus goes back to FILE2 and gets the next key 3 record. The
original key 3 record from FILE1 and the second key 3 record from FILE2 are
available.

■ Iteration 5: Since the next record on FILE2 is a key 4 record and there is still a
key 3 record on FILE1 to process, FILE2 is now unavailable. CA-Easytrieve

Synchronized File Processing

Special IF Statements

There is a simple way of determining the contents of current synchronized file
input with special conditional expressions.

MATCHED

Use the MATCHED test to determine the relationship between the current record
of one file and the current record of one or more other files.
IF [NOT] MATCHED [file-name-1 ... file-name-2 ...]

Refer to the previous Match/Merge Operation Output example, which depicts
automatic synchronized file input.

■ IF MATCHED is true for JOB iteration 3.

■ IF MATCHED FILE1, FILE3 is true for JOB iterations 1, 3, 11, and 12.

■ IF MATCHED FILE2, FILE3 is true for JOB iterations 3, 6, and 10.

File Existence

To determine the presence of data from a particular file, use the following special
conditional expressions:
IF [NOT] file-name
IF [NOT] EOF file-name

When the IF filename condition is true, a record from that file is present and
available for processing. The IF NOT filename condition is true when the file
does not contain a record with a current key. When this condition is true, no
fields from the file can be referenced in the activity. If you reference a field in an
unavailable file, a runtime error is issued.

Refer again to the previous automatic input example (Match/Merge Operation
Output example).

■ IF FILE1 is true for JOB iterations 1 through 5 and 11 through 14.

■ IF NOT FILE2 is true for JOB iterations 1, 5, 8, and 11 through 14.

■ IF EOF FILE2 is true for JOB iterations 11 through 14.

File Processing 11–19

Synchronized File Processing

DUPLICATE, FIRST-DUP, and LAST-DUP

The DUPLICATE, FIRST-DUP, and LAST-DUP tests determine the relationship
of the current record of a file to the preceding and following records in the same
file:
 {DUPLICATE}
IF [NOT] {FIRST-DUP} file-name
 {LAST-DUP }

The following record relationship tests are based on the previous example of
automatic synchronized file input (Match/Merge Operation Output example).

■ IF DUPLICATE FILE1 is true for JOB iterations 3 through 5 and 11 through
13.

■ IF FIRST-DUP FILE2 is true for JOB iterations 3 and 6.

■ IF LAST-DUP FILE3 is true for JOB iteration 12.

Note: The FIRST-DUP and LAST-DUP conditions are also DUPLICATE
conditions. A record that satisfies the IF LAST-DUP or IF FIRST-DUP condition
also satisfies the IF DUPLICATE condition.

See the “Decision and Branching Logic” chapter for more detailed examples of
conditional expressions.

Updating a Master File

The following example illustrates updating a master file based upon matching
transaction file records. The program makes the following assumptions:

■ A new master record is written when a match exists between the master file
and the transaction file.

■ There should be no duplicate transactions for a given master record. If this
occurs, the first duplicate is processed but subsequent duplicates are
bypassed.

■ No transaction records should exist without a matching master record. If this
occurs, the record is displayed on an error report and processing is
bypassed.

11–20 Reference Guide

Synchronized File Processing

FILE OLDMSTR SEQUENTIAL
 O-KEY 1 2 N
 O-AMT 3 3 N
FILE TRANS SEQUENTIAL
 T-KEY 1 2 N
 T-AMT 3 3 N
FILE NEWMSTR SEQUENTIAL
 N-KEY 1 2 N
 N-AMT 3 3 N
JOB INPUT (OLDMSTR KEY(O-KEY) +
 TRANS KEY(T-KEY)) NAME MYPROG
 * FOR MATCHED: UPDATE WITH TRAN AMT AND PUT NEWMSTR.
 * IF TRAN IS A DUPLICATE BUT NOT THE FIRST, BYPASS THE RECORD.
 IF MATCHED
 IF DUPLICATE TRANS AND NOT FIRST-DUP TRANS
 GOTO JOB
 END-IF
 MOVE O-KEY TO N-KEY
 N-AMT = O-AMT + T-AMT
 PUT NEWMSTR
 GOTO JOB
 END-IF
 * ON OLDMSTR ONLY: PUT THE NEWMSTR WITHOUT ANY UPDATE.
 IF OLDMSTR
 PUT NEWMSTR FROM OLDMSTR
 GOTO JOB
 END-IF
 * ON TRANS ONLY: PRINT ERROR REPORT.
 IF TRANS
 PRINT ERROR-RPT
 GOTO JOB
 END-IF
 *
 REPORT ERROR-RPT
 TITLE 'REPORT OF TRANSACTION WITH INVALID KEYS'
 LINE T-KEY T-AMT

Single File Keyed Processing

Using Synchronized File Processing on a single file enables you to compare the
contents of a key field or fields from one record to the next and use IF tests to
group records according to the key fields. The filename is coded on the JOB
INPUT statement as follows:
JOB INPUT (filename KEY (keyfield...))

Using single file input enables you to determine the start of a new key value and
the end of the current key value by use of IF tests.

The following IF statement determines the start of a new key.
IF FIRST-DUP filename OR NOT DUPLICATE filename.

The following IF statement determines the end of the current key.
IF LAST-DUP filename OR NOT DUPLICATE filename.

File Processing 11–21

Note: The file must be in ascending order by its key values.

Host Disk Files

Host Disk Files
CA-Corporate Tie is a Computer Associates product that provides a transparent
link between the mainframe and Personal Computers (PCs). It enables you to:

■ Access data from the mainframe

■ Send data to the mainframe

■ Share data with other microcomputer users in your network.

CA-Easytrieve Plus provides a method to access data on the mainframe and
converts it from mainframe format (EBCDIC) to popular PC formats. The
converted data is then stored in the CA-Corporate Tie Host Disk. The data can be
routed to one or more PC users in your network.

The CA-Corporate Tie External Security Interface requires that the
CA-Easytrieve Plus LOADLIB be APF authorized and EZTPA00 be linked with
an authorization code of 1.

See the CA-Corporate Tie documentation for specific information about
operating CA-Corporate Tie.

Host Disk Definition

To transfer files to CA-Corporate Tie Host Disk, define a file with a filetype of
HOSTDISK. See the “Data Definition” chapter for complete details on the Host
Disk file statement.

You define a field to describe the data you want CA-Corporate Tie to convert.
CA-Corporate Tie uses a field's description to correctly convert its data into a PC
format. Only fields you defined in the Library Section for a Host Disk file are
converted. Those fields defined after the first JOB or SORT statement for a Host
Disk file are invalid. Do not define a field that creates an overlay redefinition,
either implicitly or explicitly. Such a definition is invalid. An explicit overlay
redefinition is:
DEFINE NAME 17 20 A
DEFINE LAST-NAME NAME +10 10 A

An implicit overlay redefinition is:
DEFINE NAME 17 20 A
DEFINE LAST-NAME 27 10 A

An overlay redefinition can also be defined by a COPY filename statement. To
permit such definitions would duplicate and incorrectly convert data.

11–22 Reference Guide

Host Disk Files

To send the output of a DISPLAY statement or a REPORT statement to a Host

File Processing 11–23

to cause all REPORT output to be written to the Host Disk file.

Disk file, code the PRINTER keyword and the HOSTDISK keyword on the FILE
statement. When using a HOSTDISK PRINTER file, do not define any fields for
it. The fields needed to convert the output into PRN format are automatically
defined. PRN is the only permissible format when PRINTER is specified.

Host Disk Formats

For each format, the order of translated fields in the PC file matches their order
of appearance in the CA-Easytrieve Plus source code. A VARYING field is sent
as two fields, a two-byte binary field with zero decimals followed by an
alphanumeric field of the remaining length.

Term Description

LOTUS A PC file matching 123 format WKS is produced.

DBASEIII A PC file matching the format of DBASEIII files is produced.

BASIC A comma delimited PC file is produced. Alphanumeric fields are
enclosed in quotes.

PRN A fixed length PRN is produced. The starting position of each field
in the PRN record is determined by the sum of the maximum
lengths of the PC format fields placed before it.

EZTPC A CA-Easytrieve Plus PC data file in EBCDIC format.

Writing to the Host Disk File

There are five methods you can use to write data to a Host Disk file:

■ You can use the PUT statement to extract data from a mainframe file and
download it to a PC. You can move data into the Host Disk file using the
Assignment statement, MOVE statement, MOVE LIKE statement, or PUT
FROM statement. You have the full power to select and manipulate the data
that you want to write to the Host Disk file.

■ You can specify a Host Disk file as the output file of the SORT statement.
This enables you to control the sequence of the records written to the Host
Disk file. You can use a SORT BEFORE procedure to select records to be
sorted and written to the Host Disk file.

■ You can specify the Host Disk file as a PRINTER file (using the PRINTER
keyword on the FILE statement) and have REPORT output printed to the
file. Specify the Host Disk file as the PRINTER file on the REPORT statement

Host Disk Files

■ Similarly, if the Host Disk file is also specified as a PRINTER file on the FILE
statement, you can use the DISPLAY statement to print data to the file.

■ You can specify a Host Disk file as the SUMFILE on a REPORT statement.
This causes the resulting summary file to be written to the Host Disk. You
must code DEFINE statements for the Host Disk file that match the data
created for the summary file. See the “Report Processing” chapter for details
on summary file creation.

 Note: You must define fields for a report summary file. The CA-Easytrieve
Plus system-defined fields are not known to CA-Corporate Tie. Only fields
that you define are converted to PC format.

Host Disk File Processing

In the Library Section, you define a Host Disk file, its parameters, and its fields.
Those field definitions and the FORMAT parameter tell CA-Corporate Tie how
to correctly convert the mainframe data to PC data. CA-Corporate Tie uses the
other parameters, TO, FROM and HOSTFILE to manage Host Disk access.

In the Activity Section, you must assign values to all field parameters of a Host
Disk file before the first PUT is executed for that file. The TO parameters are
mandatory and are required to be fields. The START procedure is a convenient
place to set values for parameter fields.

Also, in the Activity Section, you can code MOVEs and assignments to fill the
Host Disk fields. When each field has a value, you issue a PUT. CA-Corporate
Tie takes the record, converts each field to its PC format in a new record, and
writes the new record to the Host Disk under the HOSTFILE name.

Host Disk file parameters are copied for CA-Corporate Tie. The parameters are
copied once in each JOB or SORT activity that uses the file. The parameters are
copied when the file is opened unless DEFER was coded on the file. If DEFER
was coded, then the parameters are copied when the first PUT is issued.

When the first PUT is issued, CA-Corporate Tie examines the Host Disk
parameters. CA-Corporate Tie checks the FROM userid and password. It verifies
that each userid or groupid in the TO recipient list exists. If a userid or groupid
exists, then CA-Corporate Tie marks the corresponding entry in the TO recipient
list with a Y. If a recipient does not exist, then CA-Corporate Tie marks the
corresponding entry with an N.

Following the PUT, you test if this is the first time the PUT is executed (for
example, IF filename:RECORD-COUNT = 1).

11–24 Reference Guide

If this is the first time, you examine each entry in the checklist for an N. If you
find an N, you can display an error message and, possibly, stop the program. It
is recommended you examine the checklist, but it is not required.

Host Disk Files

If all of the destinations are invalid, an open error A038-code 164 is issued.

When you use a Host Disk file as a REPORT PRINTER file or a REPORT
SUMFILE you should define any Host Disk parameter field as an S working
storage field. Within a REPORT procedure, any field you use to test or process,
the Host Disk parameter fields should also be defined as an S working storage
field. The STOP statement is not permitted in a REPORT procedure.

If the HOSTDISK parameter of a Host Disk file identifies an existing file,
CA-Corporate Tie does not overwrite the file on the Host Disk, unless RESET is
coded on the FILE statement. Without RESET, CA-Corporate Tie creates an
additional file with the same name on the Host Disk.

Examples

Static Parameter Specification

This example demonstrates the use of static Host Disk parameters. The
parameters on the Host Disk file are declared as literals. The TO parameters are
required to be fields.
FILE PERSNL
 DEFINE REGION 1 1 N
 DEFINE NAME 17 20 A
 DEFINE NET 90 4 P 2
 DEFINE GROSS 94 4 P 2

DEFINE PAM S 8 A VALUE 'PAM'
DEFINE CHECKLIST S 1 A

FILE PC123 HOSTDISK (TO (PAM CHECKLIST) +
 FROM ('JON' 'GUAC') +
 HOSTFILE ('PC123.DAT') +
 FORMAT ('LOTUS'))

 DEFINE REGION 1 1 N
 DEFINE NAME 5 20 A
 DEFINE NET 25 4 P 2
 DEFINE GROSS 29 4 P 2

JOB INPUT PERSNL NAME SPREADSHEET
 MOVE LIKE PERSNL TO PC123
 PUT PC123

In this example, CA-Corporate Tie user JON sends a LOTUS format copy of the
PERSNL file to the Host Disk. There, it waits for CA-Corporate Tie user PAM to
receive it to her PC.

File Processing 11–25

Host Disk Files

Dynamic Parameter Specification

11–26 Reference Guide

 IF EOF PARMS
 DISPLAY 'No records in PARMS file!'
 STOP
 END-IF

The following example demonstrates the use of dynamic Host Disk parameters.
The parameters on the Host Disk file are declared as fields. The fields used on
the Host Disk file are supplied their values at execution time from a card file.
FILE PARMS CARD
 DEFINE PARM-FROM 1 8 A
 DEFINE PARM-PW 9 8 A
 DEFINE PARM-HDFILE 17 12 A
 DEFINE PARM-FORMAT 29 8 A
 DEFINE PARM-TO 40 8 A

DEFINE WORK-FROM S 8 A
DEFINE WORK-PW S 8 A
DEFINE WORK-HDFILE S 12 A
DEFINE WORK-FORMAT S 8 A
DEFINE WORK-TO S 8 A OCCURS 50
DEFINE WORK-CHECKLIST S 1 A OCCURS 50
DEFINE WORK-COUNT S 2 P 0 VALUE 1
DEFINE ERR-COUNT S 2 P 0

FILE PERSNL
 DEFINE REGION 1 1 N
 DEFINE NAME 17 20 A
 DEFINE NET 90 4 P 2
 DEFINE GROSS 94 4 P 2

FILE PC123 HOSTDISK (TO (WORK-TO WORK-CHECKLIST) +
 FROM (WORK-FROM WORK-PW) +
 HOSTFILE (WORK-HDFILE) +
 FORMAT (WORK-FORMAT))

 DEFINE REGION 1 1 N
 DEFINE NAME 5 20 A
 DEFINE NET 25 4 P 2
 DEFINE GROSS 29 4 P 2

JOB INPUT PERSNL NAME SPREADSHEET START INIT
 MOVE LIKE PERSNL TO PC123
 PUT PC123
 IF PC123:RECORD-COUNT = 1
 PERFORM CHECKLIST
 END-IF

CHECKLIST. PROC
 DO WHILE WORK-COUNT GT 0
 IF WORK-CHECKLIST(WORK-COUNT) EQ 'N'
 DISPLAY 'CORPORATE TIE does not know userid' +
 WORK-TO(WORK-COUNT) '!'
 ERR-COUNT = ERR-COUNT + 1
 END-IF
 WORK-COUNT = WORK-COUNT - 1
 END-DO
 IF ERR-COUNT GT 0
 STOP
 END-IF
END-PROC

INIT. PROC
 GET PARMS

Host Disk Files

 WORK-FROM = PARM-FROM
 WORK-PW = PARM-PW
 WORK-HDFILE = PARM-HDFILE
 WORK-FORMAT = PARM-FORMAT

 DO WHILE WORK-COUNT LE 50 AND NOT EOF PARMS
 IF PARM-TO NOT SPACES
 WORK-TO(WORK-COUNT) = PARM-TO
 WORK-COUNT = WORK-COUNT + 1
 END-IF
 GET PARMS
 END-DO
 WORK-COUNT = WORK-COUNT + 1
 IF WORK-COUNT GT 50
 DISPLAY 'More than 50 Host Disk file recipients!'
 STOP
 END-IF
END-PROC
END
JON GUAC PC123.DAT LOTUS PAM
 RON
 ED
 MARTHA

This example provides identical processing to the previous example except all
parameters for the Host Disk file are received from a card file. This lets you
change the parameters simply by changing the input cards, instead of modifying
and recompiling the CA-Easytrieve Plus source statements. The parameters are
set in the INIT proc. They are not accessed until the PUT statement is executed.

File Processing 11–27

Host Disk Files

Sending Report Output to the Host Disk

The following example illustrates how the output from a CA-Easytrieve Plus
report can be sent to a Host Disk file.
FILE PERSNL
 DEFINE REGION 1 1 N
 DEFINE NAME 17 20 A
 DEFINE NET 90 4 P 2
 DEFINE GROSS 94 4 P 2

 DEFINE PAM S 8 A VALUE 'PAM'
 DEFINE CHECKLIST S 1 A

FILE PCRPT PRINTER HOSTDISK (TO (PAM CHECKLIST) +
 FROM ('JON' 'GUAC') +
 HOSTFILE ('REGION.RPT') +
 FORMAT ('PRN'))

JOB INPUT PERSNL NAME PCREPORT
 PRINT RPT

 REPORT RPT PRINTER PCRPT
 SEQUENCE REGION NAME
 CONTROL REGION
 TITLE 01 'Personnel Listing by Region'
 LINE 01 REGION NAME GROSS

 ENDPAGE. PROC
 DISPLAY '*** Confidential - Internal Use Only ***'
 END-PROC

This example shows how printed output can be sent to a Host Disk file.

Note: The Host Disk FILE statement uses the PRINTER keyword to indicate a
print output file. The REPORT PRINTER subparameter references the Host Disk
file as the target file for the report. The ENDPAGE procedure demonstrates how
you can annotate the report. The Host Disk file receives the DISPLAY statement
output as it is part of the report.

11–28 Reference Guide

Chapter

12 Table and Array Processing

This chapter discusses the facilities for processing the two basic categories of
tabular information:

■ File oriented table information processed by the SEARCH statement.

■ Arrays, segmented data, and data strings processed through subscripting or
index manipulation.

First, this chapter explains how a table is defined and how it is identified,
stressing the role of the SEARCH statement in processing file oriented table
information.

Second, this chapter discusses how, through subscripting or index manipulation,
one dimension and multiple dimension arrays can be defined and processed.
Also, it describes segmented data and data string processing.

Table Definition
A table is a collection of uniform data records that presents unique processing
opportunities. All tables have two parts:

Parts Definitions

Argument Uniquely identifies a table entry.

Description Remainder of the table entry.

Some typical examples of table usage include organization structures, parts list
for assembly processes, and accounting chart-of-accounts.

The dichotomized (binary) search of CA-Easytrieve Plus is extremely efficient.
Therefore, table use is recommended for applications that need to validate
encoded data and/or retrieve code description.

Table and Array Processing 12–1

Table Definition

Defining Tables

There are two types of tables that can be specified on the FILE statement:

1. Instream - (specified by the INSTREAM parameter on the TABLE option)
specifies to look for table data within your program immediately following
the FILE statement. This table is established at the time your program is
compiled. Its size is limited only by the amount of available memory.

 Be careful when setting your table value. CA-Easytrieve Plus will allocate
space for the table using the following formula:
LRECL * the number of table entries = The amount of allocated storage

 For example, if you specify a table value of 600000, approximately 21 MB of
real core storage will be allocated for the table, regardless of the actual
number of table entries. If the table has 20000 entries, the amount needed is
approximately 720,000 bytes. This is considerably smaller than the 21 MB
reserved by CA-Easytrieve Plus.

2. External - (specified by the literal-10 parameter on the TABLE option)
indicates that your table is located in a file external to your program. This file
must be sequentially accessible. An external table is established just before
use. Literal-10 specifies the maximum number of entries.

 An external table can be:

a. An existing file that is in EBCDIC ascending order by its search
argument.

b. Created by specifying the name of the table as the TO filename
parameter in a SORT activity.

All data needed to create small tables (to be processed by the SEARCH
statement) can be entered instream along with CA-Easytrieve Plus statements;
that is, the table data can immediately follow the library definition statements for
the table. The data is delimited by the word ENDTABLE in the first eight
positions of a record.

Instream data is 80 characters per record and is unaffected by the SCANCOL
option. An instream table can be retrieved from a macro file. This provides easy
access to common information. The macro must contain the entire table
definition (FILE statement through ENDTABLE). The following example
illustrates the table-of-days definition:
FILE DAYTABL TABLE INSTREAM
 ARG 1 1 A. DESC 3 9 A
1 SUNDAY }
2 MONDAY }
 ... } (instream data)
7 SATURDAY }
ENDTABLE }

12–2 Reference Guide

SEARCH Statement

The only way to modify an instream table is to recompile the program while
supplying new table data. However, you can modify external tables without
program change because these tables are built dynamically just prior to each use.

All tables must be sorted in EBCDIC ascending order by their search argument.
No duplicate search arguments are allowed. Table sequence is validated as the
table is established.

The only fields defined for table files are ARG (argument) and DESC
(description). ARG defines the field used when searching the table. DESC
defines the field that contains the desired information. The maximum length for
an alphanumeric ARG or DESC field is 254 bytes.

Note: All records between the ARG and DESC definitions and the ENDTABLE
statement are used as instream table data. For example, a record starting with an
asterisk is handled as TABLE data, not a comment. ENDTABLE is only used to
delimit instream table data. Do not include ENDTABLE in your external table
data.

The following example illustrates a typical table file description. The resulting
table provides descriptions of a hypothetical high school curriculum:
1011 ENGLISH 1 }
1012 ENGLISH II } records from
 ... } CLASSES file
 ... }
9712 HOME ECONOMICS }

FILE CLASSES TABLE (150)...
 ARG 1 4 A. DESC 10 40 A

SEARCH Statement
The SEARCH statement provides access to table information. Special conditions
of the IF statement can be used to validate the results of SEARCH operations.
The syntax of the SEARCH statement is:

Syntax
SEARCH file-name WITH field-name-1 GIVING field-name-2

Operation

file-name

Table and Array Processing 12–3

Filename is the name of the file that describes the table and its source. The file
must have the TABLE attribute and must be a fixed length.

SEARCH Statement

WITH field-name-1

The WITH fieldname-1 parameter identifies the field containing the search
argument for the binary search. This parameter is defined in any file, except for
files with the TABLE attribute or it can be defined in working storage.

The length and field type of fieldname-1 must match the length and field type of
the ARG field defined for filename. If fieldname-1 contains DBCS data, then
before making the search, it is converted into the DBCS code system of filename.
When performing the binary search of the table with a DBCS key, a bit by bit
comparison is performed.

GIVING field-name-2

The GIVING fieldname-2 parameter identifies the receiving field for the results
of the table search. This parameter is defined in any file, except for files with the
TABLE attribute or it can be defined in working storage.

The length and field type of fieldname-2 must match the length and field type of
the DESC field defined for filename. If fieldname-2 contains DBCS data then the
result of the search is converted from the DBCS code system of filename into the
DBCS code system of fieldname-2.

After each SEARCH statement, you can code an IF filename test to determine the
success of the table search. When the search is successful (IF filename is true),
fieldname-2 contains table descriptive data corresponding to the search
argument of fieldname-1. When the search is unsuccessful (IF filename is false),
the contents of fieldname-2 are unchanged.

Searching Tables

You can code SEARCH statements any place within a JOB activity, and issue any
number of SEARCHes against any number of tables.

The following example illustrates the retrieval of high school class descriptions,
based on class identification codes.

12–4 Reference Guide

Single Dimension Arrays

Statements:

Table and Array Processing 12–5

Data definition is straightforward. The value of MONTH-INDEX controls access
to the desired data occurrence, MONTH.

DEFINE CODE W 4 A
DEFINE DESCRIPTION W 40 A
FILE CLASSES TABLE INSTREAM
ARG 1 4 A
DESC 10 40 A
1011 ENGLISH I
1012 ENGLISH II
1013 ENGLISH III
1014 ENGLISH IV
ENDTABLE
JOB INPUT NULL NAME MYPROG
 MOVE '1012' TO CODE
 SEARCH CLASSES WITH CODE, GIVING DESCRIPTION
 IF CLASSES
 DISPLAY DESCRIPTION
 ELSE
 DISPLAY 'CLASS NOT FOUND'
 END-IF
 STOP

Produce:

 ENGLISH II

Single Dimension Arrays
An array is a series of consecutive memory locations in one or more dimensions.
You can process identical elements in arrays by using either subscripting or
index manipulation.

Index Attribute

Any data field definition can contain the INDEX attribute. An index can be used
to reference data fields that occur multiple times. If you do not use an index, you
must either use subscripts or assign individual field names to multiple field
occurrences.

The data field starting location is adjusted by the contents of its indexes to
determine the desired field occurrence. The INDEX indexname value is set to:
(desired occurrence number - 1) * (length of element)

Example

The following one-dimension array is typical of those found in most programs.

Single Dimension Arrays

Statements:

DEFINE ARRAY-ELEMENT W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH MONTHS 10 A +
 OCCURS (12) INDEX (MONTH-INDEX)
JOB INPUT NULL NAME MYPROG
 ARRAY-ELEMENT = 11
 MONTH-INDEX = (ARRAY-ELEMENT - 1) * 10
 DISPLAY MONTH
 STOP

Produce:

 NOVEMBER

Since MONTHS is 10 bytes long, the following relationships are true:

 ARRAY-ELEMENT MONTH-INDEX DATA OCCURRENCE
 is is is
 ──
 1 0 JANUARY
 2 10 FEBRUARY
 3 20 MARCH

 12 110 DECEMBER

12–6 Reference Guide

Multiple Dimension Arrays

Multiple Dimension Arrays
Multiple dimension arrays can be defined in two different ways. You can define
a single field with multiple indexes, or you can index a redefining field, as well
as the parent field.

The following example illustrates two arrays that are identical in size and usage,
but are defined very differently.

When:

MONTH-INDEX-1 MONTH-INDEX-2 MONTH	ROW-INDEX COL-INDEX MONTH-CELL
 0 0 JANUARY | 0 0 JANUARY
 0 10 FEBRUARY | 0 10 FEBRUARY
 0 20 MARCH | 0 20 MARCH
 30 0 APRIL | 30 0 APRIL
 30 10 MAY | 30 10 MAY
 30 20 JUNE | 30 20 JUNE
 60 0 JULY | 60 0 JULY
 60 10 AUGUST | 60 10 AUGUST
 60 20 SEPTEMBER | 60 20 SEPTEMBER
 90 0 OCTOBER | 90 0 OCTOBER
 90 10 NOVEMBER | 90 10 NOVEMBER
 90 20 DECEMBER | 90 20 DECEMBER

In both cases, the sum of the indexes determines which data occurrence is
referenced. Both MONTH and MONTH-CELL are 10-character fields with two
indexes.

Both fields also occur 12 times. MONTH-INDEX-1 and ROW-INDEX, and
MONTH-INDEX-2 and COL-INDEX are considered similar indexes.

Table and Array Processing 12–7

Multiple Dimension Arrays

You can define and access arrays of more than two dimensions by a simple
extension of the following examples:

Statements:

DEFINE QUARTER-ROW W 2 N
DEFINE MONTH-COL W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH MONTHS 10 A OCCURS (12) +
 INDEX (MONTH-INDEX-1, MONTH-INDEX-2)
JOB INPUT NULL NAME MYPROG
 QUARTER-ROW = 4
 MONTH-COL = 2
 MONTH-INDEX-1 = (QUARTER-ROW - 1) * 30
 MONTH-INDEX-2 = (MONTH-COL - 1) * 10
 DISPLAY MONTH
 STOP

12–8 Reference Guide

Multiple Dimension Arrays

Statements:

DEFINE QUARTER-ROW W 2 N
DEFINE MONTH-COL W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH MONTHS 10 A +
 OCCURS (12)
DEFINE MONTH-ROW MONTH 30 A, +
 OCCURS 4, INDEX (ROW-INDEX)
DEFINE MONTH-COLS MONTH-ROW 10 A, +
 OCCURS 3, INDEX (COL-INDEX)
DEFINE MONTH-CELL MONTH-COLS 10 A
JOB INPUT NULL NAME MYPROG
 QUARTER-ROW = 4
 MONTH-COL = 2
 ROW-INDEX = (QUARTER-ROW - 1) * 30
 COL-INDEX = (MONTH-COL - 1) * 10
 DISPLAY MONTH-CELL
 STOP

Table and Array Processing 12–9

Subscripts

Subscripts
Subscripts are an alternate method available to select an individual element from
an array. The use of subscripts means you don’t have to compute the index
value. In order for this to be done for you, certain restrictions must be placed on
the way arrays are defined.

12–10 Reference Guide

Subscripts

Defining a One-Dimension Array

Table and Array Processing 12–11

ELEMENT(1,5) EE
ELEMENT(2,1) FF

ELEMENT(3,5) OO

A one-dimension array is defined just as it would be if indexing were to be used.
Referring back to the Single Dimension Arrays Example, the following example
illustrates the relationship between the array element and the corresponding
array element value:
ELEMENT VALUE
 is is

MONTH(1) JANUARY
MONTH(2) FEBRUARY
MONTH(3) MARCH

MONTH(12) DECEMBER

For this array the maximum value to be specified for the occurrence number is
12.

Defining a Two-Dimensional Array

A two-dimensional array is somewhat more complicated. To define a
two-dimensional array, you must define the length and number of occurrences
of each dimension. The next two examples illustrate this as follows:
DATA W 30 A VALUE 'AA+
 BB+
 CC+
 ...
 OO'
RANK DATA 10 A OCCURS 3
COLUMN RANK 2 A, OCCURS 5
ELEMENT COLUMN 2 A

This illustration defines a two-dimensional array, ELEMENT, with three rows
and five columns, each occurrence of which is an alphabetic field of two
characters. The first dimension, RANK, is defined as having three occurrences.
The second dimension, COLUMN, is defined as having five occurrences. The
length of the first dimension, RANK, must be the length of the second
dimension, COLUMN, times the number of occurrences of the second
dimension, COLUMN.

The following example illustrates the relationship between the array element
and the corresponding array element value:
ELEMENT VALUE
 is is

ELEMENT(1,1) AA
ELEMENT(1,2) BB
ELEMENT(1,3) CC
ELEMENT(1,4) DD

Subscripts

Defining a Three-Dimensional Array

A three-dimensional array is a simple extension of a two-dimensional array. To
define a three-dimensional array, you define the length and number of
occurrences of each dimension (as you did for a two-dimensional array). The
only difference is that you add the definition of a third dimension
(MONTH-LET). This third dimension enables you to easily select individual
positions within a cell in the array. The following example illustrates the
definition and use of a three-dimensional array:

Statements:

DEFINE QUARTER-ROW W 2 N
DEFINE MONTH-COL W 2 N
DEFINE MONTHS W 120 A VALUE +
 'JANUARY +
 FEBRUARY +
 MARCH +
 APRIL +
 MAY +
 JUNE +
 JULY +
 AUGUST +
 SEPTEMBER +
 OCTOBER +
 NOVEMBER +
 DECEMBER '
DEFINE MONTH-ROW MONTHS 30 A, +
 OCCURS 4
DEFINE MONTH-COLS MONTH-ROW 10 A, +
 OCCURS 3
DEFINE MONTH-LET MONTH-COLS 1 A, +
 OCCURS 10
DEFINE MONTH-CELL MONTH-LET 1 A
JOB INPUT NULL NAME MYPROG
* THIS PROGRAM DISPLAYS THE 3RD
* LETTER OF THE MONTH IN THE 4TH
* ROW, 2ND COLUMN (THE V IN NOVEMBER)
 DISPLAY MONTH-CELL (4, 2, 3)
 STOP

Produce:
V

12–12 Reference Guide

Segmented Data

Using Subscripts

Table and Array Processing 12–13

 SALARY-GRADE 38 2 N INDEX SALINDEX
 SALARY-EFF-DATE 40 6 N INDEX SALINDEX

You can use subscripts with a field name in the following manner:
[file-name:] [record-name:] field-name (subscript ...)

The following restrictions apply to the use of subscripts:

1. You can specify no more than 30 subscripts.

2. A subscript must be a field name or a literal. An arithmetic expression
cannot be coded for a subscript.

3. Subscript value must be a positive integer, no greater than the value
specified for the OCCURS parameter of the DEFINE statement for
fieldname.

4. You cannot subscript a field name used as a subscript.

5. An indexed field cannot be used as a subscript.

Segmented Data
One of the most common data structures is segmented data. Each record
contains a fixed portion of data and multiple occurrences of data segments. The
actual number of occurrences is not known until execution time. In COBOL,
these structures are known as variable-length table definitions and are defined
with an “occurs depending on” clause.

The following example illustrates the field definitions necessary to describe a
personnel record with a fixed area and variable occurrences of dependent and
salary history segments.
FILE MASTER
*
* FIXED PORTION
*
EMP-ID 1 5 N
EMPNAME 6 20 A
NO-OF-DEPENDS 26 2 N
NO-OF-JOBS 28 2 N
*
* DEPENDENT SEGMENTS
*
DEPEND-INFO 30 26 A OCCURS 20
 DEPEND-NAME 30 20 A INDEX DEPINDEX
 DEPEND-BIRTH 50 6 N INDEX DEPINDEX
*
* SALARY HISTORY SEGMENTS
*
SALARY-HISTORY 30 16 A OCCURS 10
 SALARY-AMOUNT 30 8 N 2 INDEX SALINDEX

Segmented Data

Because the starting location for each variable occurring segment is not known,
the first position after the fixed portion is used. Later, to access the data, the
length of the preceding segments is added to the index to determine the starting
location of the next variable segment. The OCCURS parameter specifies the
maximum number of occurrences for each variable portion.

The following example illustrates the index manipulation statements necessary
to access the data contained in the file:
FILE MASTER
*
* FIXED PORTION
*
EMP-ID 1 5 N
EMPNAME 6 20 A
NO-OF-DEPENDS 26 2 N
NO-OF-JOBS 28 2 N
*
* DEPENDENT SEGMENTS
*
DEPEND-INFO 30 26 A OCCURS 20
 DEPEND-NAME 30 20 A INDEX DEPINDEX
 DEPEND-BIRTH 50 6 N INDEX DEPINDEX
*
* SALARY HISTORY SEGMENTS
*
SALARY-HISTORY 30 16 A OCCURS 10
 SALARY-AMOUNT 30 8 N 2 INDEX SALINDEX
 SALARY-GRADE 38 2 N INDEX SALINDEX
 SALARY-EFF-DATE 40 6 N INDEX SALINDEX
WORK-CTR W 2 N
*
JOB INPUT MASTER NAME PERSONNEL-REPORTS
 MOVE ZEROS TO DEPINDEX, WORK-CTR . * INITIALIZE DEPENDENT INDEX, CTR
 DO WHILE WORK-CTR < NO-OF-DEPENDS. * PROCESS ALL DEPENDENT PORTIONS
 PRINT DEPEND-REPORT
 WORK-CTR = WORK-CTR + 1
 DEPINDEX = DEPINDEX + 26
 END-DO
*
 MOVE ZERO TO WORK-CTR . * REINITIALIZE CTR
 SALINDEX = (NO-OF-DEPENDS * 26) . * START OF SALARY HISTORY IS THE
* . * END OF THE DEPENDENT PORTION
 DO WHILE WORK-CTR < NO-OF-JOBS . * PROCESS ALL SALARY PORTIONS
 PRINT SALARY-REPORT
 WORK-CTR = WORK-CTR + 1
 SALINDEX = SALINDEX + 16
 END-DO
*
 REPORT DEPEND-REPORT LINESIZE 72 SPACE 1
 TITLE 'DEPENDENT REPORT'
 LINE EMP-ID EMPNAME DEPEND-NAME DEPEND-BIRTHDATE
*
 REPORT SALARY-REPORT LINESIZE 72 SPACE 1
 TITLE 'SALARY REPORT'
 LINE EMP-ID EMPNAME SALARY-AMOUNT SALARY-GRADE SALARY-EFF-DATE

12–14 Reference Guide

Data Strings

Data Strings
Evaluating strings of data is another common index process. An example of this
process is:
FILE NAMES CARD
 DATA-NAME 1 20 A
 SCAN-NAME DATA-NAME 1 A INDEX SUB1
 REVERSED-NAME W 20 A
 SCAN-REVERSED REVERSED-NAME 1 A INDEX SUB2
COUNTER W 2 P 0
SAVE-COUNT W 2 P 0
JOB INPUT NAMES
*
* INITIALIZE REVERSED NAME, SUB1, SUB2, AND COUNTER FIELDS
*
MOVE SPACES TO REVERSED-NAME
MOVE ZEROS TO SUB1, SUB2, COUNTER
*
* FIND LENGTH OF LAST NAME
*
 DO WHILE SCAN-NAME NQ ','
 COUNTER = COUNTER + 1
 SUB1 = SUB1 + 1
 END-DO
SAVE-COUNT = COUNTER . *SAVE LENGTH OF LAST NAME
COUNTER = 0 . *RESET COUNTER
SUB1 = SUB1 + 1 . *BUMP SUB1 PAST THE COMMA
*
* FIND FIRST NAME AND MOVE TO REVERSED NAME
*
 DO WHILE SCAN-NAME NQ ' ' +
 AND COUNTER LE 20
 SCAN-REVERSED = SCAN-NAME
 COUNTER = COUNTER + 1
 SUB2 = SUB2 + 1
 SUB1 = SUB1 + 1
 END-DO
COUNTER = 0 . *RESET COUNTER
SUB1 = 0 . *RESET TO BEGINNING OF LAST NAME
SUB2 = SUB2 + 1 . *BUMP SO SPACE IS BETWEEN FIRST AND
* *LAST NAMES
* MOVE LAST NAME TO REVERSED NAME FIELD
*

 DO WHILE COUNTER LQ SAVE-COUNT - 1
 SCAN-REVERSED = SCAN-NAME
 COUNTER = COUNTER + 1
 SUB1 = SUB1 + 1
 SUB2 = SUB2 + 1
 END-DO
PRINT NAMES-REPORT
REPORT NAMES-REPORT LINESIZE 78
 TITLE 1 'EXAMPLE OF HOW TO REVERSE NAMES'
 TITLE 2 'INPUT FIELD FORMAT IS:'
 TITLE 3 'LAST-NAME,FIRST-NAME'
 LINE REVERSED-NAME DATA-NAME
END

Table and Array Processing 12–15

Data Strings

The following example illustrates a technique for taking names from the input
record, reversing them, and then printing them. The results of this program are:
REVERSED-NAME DATA-NAME

JIM WIMN WIMN,JIM
BOB SNIGGOC SNIGGOC,BOB
CARL PETERSON PETERSON,CARL
PAULVIN DEMBOMAN DEMBOMAN,PAULVIN

12–16 Reference Guide

Chapter

Subprograms 13

This chapter describes the techniques used to invoke subprograms of other
languages. The following points are discussed:

■ Program loading

■ Storage management

■ Mode Considerations

■ Linkage (register usage) conventions

■ Parameter list

■ LE-Enabled Support

■ Error condition handling.

Subprograms written in Assembler, COBOL, FORTRAN, and PL/I are
supported by CA-Easytrieve Plus with certain limitations. These limitations are
discussed in this chapter. The Programmer Guide for the programming language
you use describes the idiosyncrasies of that language when being used as a
subprogram.

Programming Languages
All of the functions necessary to perform standard input/output, data
examination, and data manipulation are provided. You can also invoke
subprograms written in other programming languages through the EXIT
parameter of the FILE statement for input/output related events (see the “

” chapter) and through the CALL statement for all other requirements.
Data

Definition

■ Input/output exits can be used to support filetypes that are not processed
directly.

■ CALL exits typically supply unsupported functions or interface with existing
programs in other languages.

Subprograms 13–1

Programming Languages

Program Loading

Programs written in other languages are loaded into storage as a part of activity
(JOB or SORT) initiation. No matter how many times you reference a program in
the CA-Easytrieve Plus program, only one copy is loaded. If the same program is
to perform multiple functions, parameters must be passed to the program to
identify the desired function.

In OS/390 and z/OS, all programs are loaded by invoking the LOAD function of
the operating system. The LOAD function dynamically places the program into
storage and returns the program's entry point to CA-Easytrieve Plus.

In VSE, programs are loaded in three different ways:

■ VSAM file exits are loaded by the CDLOAD function of the operating
system. These relocatable or self-relocating programs are placed in the
partition's GETVIS area.

■ Non-relocatable programs are loaded by the LOAD function of the operating
system. These programs are loaded at the location where they were link
edited. To protect against overlaying of CA-Easytrieve Plus controlled
storage, you must load non-relocatable programs at a location that is at least
4K-bytes higher than the STORMAX option value (see the “Options Table”
appendix).

■ All other programs that must be relocatable or self-relocating are loaded by
the LOAD function into space controlled by the EXITSTR option value (see
the “Options Table” appendix).

13–2 Reference Guide

Storage Management

Storage Management
In VSE, the author of programs in other languages is responsible for managing
required storage. If additional storage is needed, (for example, to LOAD another
program), you cannot use DOS COMREG facilities. All storage must be:

■ Within the originally loaded program

■ Obtained using GETVIS

■ Uniquely controlled within the STORMAX area.

Addressing Mode Considerations
CA-Easytrieve Plus always runs in 31-bit mode, and the majority of
CA-Easytrieve Plus programs reside above the 16 MB line. If the ALL31 option
is set to ON, then all compiled and linked CA-Easytrieve Plus application
programs also reside above the 16 MB line. If the ALL31 option is set to OFF,
then application programs are linked as 24 bit and reside below the 16 MB line.

If a CA-Easytrieve Plus application program is linked in 24-bit mode, the
runtime will switch modes when necessary. 24-bit mode CA-Easytrieve Plus
application programs continue to run with the 31-bit runtime without
re-compilation.

You must use the following guidelines to prevent mode-related problems when
your CA-Easytrieve Plus application programs call subprograms.

■ If any of your CA-Easytrieve Plus applications call a 24-bit subprogram, the
ALL31 option must be set to OFF. This ensures that any data areas passed to
the subprogram are accessible. If you have any subprogram that is 24 bit,
you must set the ALL31 option to OFF.

■ If you are running an existing 24-bit CA-Easytrieve Plus application that
calls a 31-bit subprogram, you can use either ALL31=ON or ALL31=OFF.

■ For efficiency, run CA-Easytrieve Plus with the ALL31 option set to ON, and
make any called subprograms 31-bit.

■ All existing 24-bit CA-Easytrieve programs that call 24-bit or 31-bit
subprograms will continue to run without recompiling or relinking. The
runtime handles mode switching when necessary. However, if the
subprogram is 24-bit, the ALL31 option must be set to OFF.

Important! The ALL31 option must be set to OFF for CMS.

For more information regarding addressing mode limitations while executing in
OS/MVS simulation, see the IBM z/VM V4R1.0 CMS Application Development
Guide for Assembler.

Subprograms 13–3

Linkage (Register Usage) Conventions

Linkage (Register Usage) Conventions
When a subprogram written in another programming language is invoked,
standard IBM register management conventions are adhered to. The called
subprogram must honor these conventions.

Linkage Register Usage
■ REGISTER 1—Address of the parameter list

■ REGISTER 13—Address of an 18-fullword register Save Area

■ REGISTER 14—Address of where to return to within CA-Easytrieve Plus

■ REGISTER 15—Address of the entry point in the subprogram.

The subprogram must save the CA-Easytrieve Plus registers in the save area
addressed by REGISTER 13 and must restore them prior to returning using
REGISTER 14. This 18-fullword register Save Area provided by CA-Easytrieve
Plus must be maintained as illustrated in the following sections:

Register Save Area Usage
■ WORD 1—Reserved

■ WORD 2—Set by CA-Easytrieve Plus to the address of the Save Area for the
internal routine prior to the one issuing the subprogram call.

■ WORD 3—Set by the subprogram to the address of the Save Area within the
subprogram.

■ WORD 4 through WORD 18—Set by the subprogram to values contained in
CA-Easytrieve Plus REGISTERS 14 through 12 upon entry to the
subprogram.

As previously stated, subprograms written in any other programming language
can be invoked, as long as the subprogram follows the conventions described
here. Typical linkage is to assembler language, COBOL, or PL/I subprograms.

13–4 Reference Guide

Linkage (Register Usage) Conventions

Assembler Subprogram Linkage

Subprograms 13–5

 ...

Assembler language subprograms present no linkage problems. The following
example depicts the instructions necessary to successfully control assembler
language subprogram linkage.
ASMPGM CSECT
 STM 14,12,12(13) save registers 14 through 12
 LR 11,15 set base register
 USING ASMPGM,11 assign base register
 LA 14,0(0,13) address of CA-Easytrieve Plus' save area
 LA 13,MYSAVE address of subprogram's save area
 ST 13,8(0,14) chain forward
 ST 14,MYSAVE+4 chain backward
 LR 10,1 save parameter list address
 ...
 ...
 ...
RETURN L 13,4(0,13) address of CA-Easytrieve Plus' save area
 LM 14,12,12(13) restore CA-Easytrieve Plus' registers
 MVI 8(13),X'FF' indicate unused save area
 SR 15,15 set zero return code
 BR 14 return to CA-Easytrieve Plus
 ...
MYSAVE DC 18A(0) 18 fullword save area
 ...
 ...

OS/390 and z/OS Assembler subprograms, which are called, can have an
AMODE of 24, 31, or ANY and an RMODE of 24 or ANY. EXIT programs must
have an AMODE of 24 and an RMODE of 24.

COBOL Subprogram Linkage

COBOL subprogram linkage is dependent upon the operating system (OS/390,
z/OS, or VSE) and the COBOL parameters that were in effect when the COBOL
subprogram was compiled. See the COBOL Programmer's Guide for specific
details on these parameters and linkage conventions. The following example
depicts typical COBOL instructions necessary to control subprogram linkage:
 ...
LINKAGE SECTION.
01 PARAMETER-1.
 ...
01 PARAMETER-2.
 ...
01 PARAMETER-N.
 ...
PROCEDURE DIVISION USING PARAMETER-1,
 PARAMETER-2,
 ...
 PARAMETER-N.
 ...
 ...
GOBACK

Linkage (Register Usage) Conventions

In VSE, for OS/VS COBOL subroutines to behave correctly as called programs,
the linkage control module ILBDMNS0 must be assembled and linked instream
with the COBOL phase as follows:
// OPTION CATAL
 PHASE CBLNAME,*
// EXEC ASSEMBLY
ILBDMNSO CSECT
 DC X'FF000000000000000000000000000000'
* Older versions of COBOL used an eight-byte ILBDMNSO
* Check existing link maps to determine the length.
 END
/*
// EXEC FCOBOL
 ...COBOL SOURCE
/*
// EXEC LNKEDT

Note 1: Different releases of the COBOL compiler create ILBDMNS0 modules of
differing lengths. Please check one of your ILBDMNS0 link maps for the correct
length.

Note 2: Do not link ILBDMNS0 for COBOL II and COBOL for VSE (LE) .
Instead, use the ENVIRONMENT COBOL parameter, as described in the
ENVIRON Option and ENVIRONMENT Parameter section in this chapter.

There are two ways to establish a proper execution environment for COBOL

 available in

 statements.

subprograms in OS/390 and z/OS:

1. For OS/VS COBOL, you can compile your COBOL subprogram with the
NOENDJOB and NORESIDENT options. This establishes the subprogram
properly as a called program. The NOENDJOB parameter is not
COBOL II.

2. For COBOL II or LE COBOL, use the CA-Easytrieve Plus ENVIRON system
option or the ENVIRONMENT parameter of the JOB and PARM
Using any of these specifies to establish the environment for a called COBOL
subprogram.

ENVIRON Option and ENVIRONMENT Parameter

A COBOL environment is set for JOB activities containing CALL statements in
one of three ways:

1. The ENVIRONMENT COBOL parameter of the JOB statement is coded. This
establishes the proper LE and/or COBOL environment only for
subprograms called in that JOB activity. (See JOB Statement in
the“Processing Activities” chapter.)

2. The ENVIRONMENT COBOL subparameter of the PARM statement is
coded. This establishes the proper LE and/or COBOL environment for all
subprograms called in all JOB activities of the CA-Easytrieve Plus program.
(See PARM Statement in the “Environment Definition” chapter.)

13–6 Reference Guide

Linkage (Register Usage) Conventions

3. The ENVIRON=COBOL option of the system Options Table is set when
CA-Easytrieve Plus is installed. This establishes the proper LE and/or
COBOL environment for all subprograms called in all JOB activities for all
CA-Easytrieve Plus programs. (See the “Options Table” appendix.)

COBOL ENVIRONMENT Operation

When the ENVIRON=COBOL option or ENVIRONMENT COBOL parameter is
in effect, the correct environment is established for JOB activities containing
CALL statements, and JOB activities referencing files that use FILE EXIT,
according to the hierarchy described earlier.

A “stub” program is loaded and called to establish the proper environment. This
stub program is supplied in object form and is link edited with CA-Easytrieve
Plus. For COBOL II, a COBOL II stub program is called. The stub acts as the
main COBOL program in the run unit. It initializes the LE and/or COBOL
environment at the start of the JOB activity and terminates the environment at
the end of the JOB activity. This enables subprograms to act properly as called
subroutines without using the ENDJOB compiler option.

COBOL Environment Rules

The rules for using ENVIRONMENT COBOL are as follows:

■ The parameter functions for CALLed subprograms, FILE EXITs; it functions
in OS/390, z/OS, and VSE.

■ All COBOL programs in the run unit must be compiled with the RESIDENT
and REENTRANT compiler options. This ensures that all COBOL modules
access the same copy of the global data area and optimum performance is
obtained.

■ FILE EXITs and subprograms can have an AMODE of 24, 31, or ANY and an
RMODE of 24 or ANY.

■ When the COBOL subprogram issues a GOBACK statement, control returns
to the CA-Easytrieve Plus statement following the CALL statement.

■ When the COBOL subprogram executes a STOP RUN statement, the
statement causes the current CA-Easytrieve Plus activity to terminate. When
an activity terminates due to a STOP RUN, any spooled reports currently
being printed are terminated. Any unprinted spooled reports are purged,
therefore, programs that use FORTRAN service routines cannot be called.

■ Support for Language Environment (LE) takes place through the
ENVIRONMENT COBOL parameter. See the LE-Enabled Support section in
this chapter for guidelines concerning subprograms in LE.

Subprograms 13–7

Parameter Lists

VS FORTRAN Subprogram Linkage

Linkage with VS FORTRAN is supported in a none I/O mode only. VS
FORTRAN requires a static link of module #VFEIN with the calling program
that does the I/O. Static linkage is not supported, therefore, programs that use
FORTRAN service routines cannot be called.

Linkage with PL/I is unique due to its non-standard conventions. This limits its
use to 24-bit processing only. It also requires use of the PROC
OPTIONS(COBOL) parameter. See the PL/I Optimizing Compiler Programmer's
Guide for details on the linkage of PL/I subprograms with other programming
languages.

The parameter list for both input/output and CALL exits (pointed to by
REGISTER 1) passes information to the subprogram. Each entry in this
contiguous group of fullwords identifies one parameter. The end of the list is
indicated by the high-order bit of the last entry being set to a one.

PL/I Subprogram Linkage

Parameter Lists

Parameter List Format

The parameter lists passed to subprograms for EXIT (FILE) and CALL are quite
similar. In fact, the list for CALL is identical to that associated with the USING
subparameter of EXIT. The only difference is that EXIT always passes at least
two parameters.

13–8 Reference Guide

Parameter Lists

Exit Parameter List

You can use the EXIT parameter of the FILE statement to invoke subprograms
written in other programming languages for input/output related events. Code
the name of these subprograms on the EXIT parameter of the FILE statement in
the library of your program.

For input/output exits, work area address and the control code address are
required parameters. The control code is a fullword used to indicate the function
to be performed by the exit. For instance:
Control Code
 Value Function

00000000 input request
00000004 output request
00000008 file close request, or end-of-input
 (set by input exit subprogram)

For MODIFY exits (subparameter of the FILE statement), the required two
parameters are record area address and work area address because the exit
receives all records after input and before output.

Subprograms 13–9

Parameter Lists

Parameters coded on the optional USING subparameter of EXIT are appended to
the standard two parameters. The following example shows input/output and
MODIFY subprogram parameter list examples:

13–10 Reference Guide

CALL Statement

Subprograms 13–11

user-defined field or the system-defined field RETURN-CODE, passing the
return code to the operating system.

CALL Statement
The CALL statement provides a means to dynamically invoke subprograms
written in other programming languages. The syntax of the CALL statement is:

Syntax
 [{ }]
CALL program-name [NR] [USING({field-name-1} ...)] +
 [{'literal' }]

[RETURNS field-name-2]

Operation
program-name

Program-name is the name of the subprogram that you want invoked. It is
loaded into storage as part of the JOB or SORT activity initiation.

[NR]

NR is a VSE-only option that specifies the subprogram as non-relocatable.

[{ }]
[USING({field-name-1} ...)]
[{'literal' }]

USING specifies the parameter list passed to the subprogram. Fieldname-1 must
identify a system-defined field, a working storage field, or a field defined in an
accessible file. If fieldname contains DBCS data, then it is passed unaltered to the
subprogram. Literal can be any literal you want passed to the program. The
DBCS code system to be used for this literal is the DBCS code system defined as
the Processing code. The data format for the literal does not change. You can
pass a maximum of 64 fields to the called program.

[RETURNS field-name-2]

RETURNS identifies a numeric field to contain the return code passed back by a
called subprogram. If calling a COBOL subprogram, the return code is the value
in the COBOL RETURN-CODE field. If calling an Assembler subprogram, the
return code is the value contained in REGISTER 15. Fieldname-2 is a numeric
CA-Easytrieve Plus field that contains the RETURNed value. The field can be a

LE-Enabled Support

CALL Parameter Lists

13–12 Reference Guide

execution.

The following example illustrates a CALL statement and its associated
parameter list. When the CALL statement does not contain a USING parameter,
REGISTER 1 is set to 0 to indicate that no parameter list is being passed.

LE-Enabled Support
CA-Easytrieve Plus supports LE, COBOL II, and OS/VS/COBOL via the
ENVIRONMENT COBOL parameter.

When PARM ENVIRONMENT(COBOL) is specified in a CA-Easytrieve Plus
program (or in the Options Table), the CA-Easytrieve Plus initialization
establishes either the LE/COBOL or the COBOL II environment. You control
which environment is established by your placement of the LE runtime library
(SCEERUN in OS/390 and z/OS or SCEEBASE in VSE). In order to run in LE
mode, the LE runtime loadlib must be in the linklist, joblib, steplib, or LIBDEF
preceding any other COBOL runtime libraries. If you do not do this, the LE setup
is not done. If the LE runtime lib members are not found, the COBOL II
environment is established.

Note: Leave LE runtime library out in order to run older COBOLs.

When running with LE runtime libraries and PARM ENVIRONMENT(COBOL),
the CA-Easytrieve Plus program becomes the "main" LE program in the job

LE-Enabled Support

Calling COBOL

To call COBOL programs, specify PARM ENVIRONMENT (COBOL) in the
CA-Easytrieve Plus program or in the Options Table. We highly recommend that
you recompile and link the COBOL programs using the LE compiler and link
libraries.

Results are unpredictable if you call old compiled and linked COBOL programs
while running with LE libraries.

Calling Assembler

The instructions in this section are needed only if the CA-Easytrieve Plus
program is calling LE-enabled Assembler programs. Your existing Assembler
programs do not need to be LE-enabled because of CA-Easytrieve Plus LE
support.

To call Assembler, specify PARM ENVIRONMENT (COBOL) in the CA-Easytrieve
Plus program or in the Options Table.

On the CEEENTRY macro in the Assembler program, specify the following:
MAIN=NO
PARMREG=1

Calling LE CEEExxxx Routines

To call LE CEEExxxx routines, specify PARM ENVIRONMENT (COBOL) in the
CA-Easytrieve Plus program or in the Options Table.

Calling PL/I

In order to call PL/I, use the following guidelines:

■ Specify PARM ENVIRONMENT (COBOL) in the CA-Easytrieve Plus
program (or in the Options Table).

■ In the PL/I program, specify PROC OPTIONS (FETCHABLE COBOL). Do
not specify MAIN in the OPTIONS because the CA-Easytrieve Plus program
executes as the LE "main" program.

■ Recompile and link the PL/I programs using the LE PL/I compiler and LE
link libraries. The programs must be linked with AMODE (31) and RMODE
(ANY).

Subprograms 13–13

Error Condition Handling

File Exit Programs

PARM ENVIRONMENT (COBOL) establishes an environment for FILE EXITs.
(You no longer have to use the EZT CALL statement for FILE EXIT
functionality.)

Error Condition Handling
Program errors that occur in subprogram exits cause the abnormal termination
of CA-Easytrieve Plus programs. Since these errors are occasionally difficult to
analyze, exits should be tested first using simulation.

13–14 Reference Guide

Chapter

14 System Facilities

The CA-Easytrieve Plus system facilities assist you in writing and debugging
programs. These facilities include:

■ The format of the compile listings

■ Information printed at execution time

■ Abnormal termination facilities.

This chapter discusses the format of compile listing options in detail, including:

■ Page header

■ Statement listing

■ Parameter listings

■ CLIST statement offset map

■ DMAP data map

■ PMAP program map

■ Cross-reference report.

This chapter also discusses execution listings that help you understand your
output.

Finally, this chapter describes the abnormal termination facilities of
CA-Easytrieve Plus. These facilities pinpoint the problems in your program.

System Facilities 14–1

Compiler Directives

Compiler Directives

End

END is used to delimit CA-Easytrieve Plus control statements from a CARD
input file. The word END must fall within columns 1 and 72 (scan column
default) to function properly as the END record.

The END record:

■ Must be on a source record by itself.

■ Is recognized as a delimiter and does not appear on the compiler listing.

■ Is not recognized in a macro.

The syntax is:

Syntax
END

Utility Programs

EZTPX01

EZTPX01 is a called subprogram used to interrogate a PARM coded on a JCL
EXEC statement.

EZTPX01 requires two parameters, the system defined PARM-REGISTER, and a
user defined input/output field. The input/output field must consist of a 2-byte
binary field immediately followed by a character portion to contain the actual
PARM information.

You are responsible for placing the maximum length you expect for the PARM
information (the character portion) into the 2-byte binary field before calling
EZTPX01. EZTPX01 moves your PARM data from your JCL EXEC statement into
the character portion of your input/output field and updates the length in the
2-byte binary portion.

14–2 Reference Guide

Compile Listing

If the PARM data is larger than the maximum length you specified, it
truncated on the right and the maximum length you defined is retai
PARM data is shorter than the length you specified, the length is
reflect the actual length of the PARM data. See the “Processing JC
chapter in the Application Guide for a sample program using EZTPX

EZTPX03 builds the Double Byte Character Set Options Module
Option Installatoin” chapter in the Getting Started for more information.

EZTPX04 builds the extended reporting Options Module. See the the “Options
Module” chapter in the Extended Reporting Facility Guide for more information.

 is
ned. If the

 updated to
L Parameters”

01.

EZTPX03

. See the “DBCS

EZTPX04

EZTPX05

EZTPX05 is a called subprogram that recreates the original control cards used to
generate your current CA-Easytrieve Plus Options Table. EZTPX05 requires one
parameter, an 80-byte alphanumeric array occurring once for each possible
option. Currently, there are approximately 80 options available. See the Getting
Started for a sample program using EZTPX05.

Compile Listing
CA-Easytrieve Plus compiles your source program into executable machine
language. The compiler also produces several listings that inform you about the
results of the compilation. Optional PARM statement parameters select the types
of printed output generated by the compilation.

Note: A compiled program uses the options that were in effect at the time of
compilation.

The compile listing is always directed to the CA-Easytrieve Plus system output
file (SYSPRINT/SYSLST). If the Extended Printer Options Module (EZTPXRPT)
has associated this file with an extended reporting printer, then the logical print
records satisfy the requirements of that printer.

System Facilities 14–3

Compile Listing

Header

14–4 Reference Guide

 7 SEX 127 1 A -DATADEF
 8 JOB INPUT(TESTIN)
 9 DISPLAY NEWPAGE REGION BRANCH EMP#
10 STOP

The header consists of two lines. The first line contains the following:

1. The date and the time of the compile

 If an extended reporting printer is defined for the system output file
(SYSPRINT/SYSLST) and that printer supports DBCS format data, then the
date specified in the DBCS Option module (DATE parameter) is printed. If
that date is not specified or the system output file does not support DBCS
data, the date is in the format, defined in the system option module.

 The date is in the format specified by the DATE option during installation.
The time is in hh.mm.ss format.

2. Compiler identification.

3. The page number.

 As with the date, if the system output file is associated with an extended
reporting printer that supports DBCS type data, the page count is edited and
converted into the corresponding DBCS value. This number is then
combined with the Kanji page character. If the printer does not support
DBCS format data, the page number is formatted using the value coded in
the option module (the PAGEWRD keyword).

The second line contains the installation name as defined by the option
COMPNAME. The header is repeated at the top of each page of
compiler-generated output.

If the printer associated with the system output files (SYSPRINT/SYSLST)
supports DBCS data and the COMPNAME option in the DBCS Option module is
specified, then the DBCS installation name is output on this line. If the printer
does not support DBCS data, the company name defined in the Options Module
is used. See the COMPNME option in the Getting Started.

Statement Listing

Input to the compiler is listed one record per line. The line consists of a
CA-Easytrieve Plus generated statement number (A), followed by the input
record (B). If the input is from a macro, '-macroname' (C) is appended to the line.
The following example illustrates this.
 (A) (B) (C)
 1 FILE TESTIN
 2 %DATADEF
 3 REGION 1 1 N -DATADEF
 4 BRANCH 1 1 N -DATADEF
 5 EMP# 9 5 N. CODE 16 1 N -DATADEF

Compile Listing

If the compilation processes a DBCS literal (as identified by the presence of shift
codes) and the output file is directed to a printer that supports DBCS data, then
the DBCS data is printed as part of the normal compile listing.

Listing Control Statements

Listing control statements allow you to control (format) the physical layout of
the statement listing:

■ You can place listing control statements anywhere in the CA-Easytrieve Plus
source.

■ Listing control statements must be on a record by themselves.

■ Listing control statements do not appear in the printed output.

The five listing control statements are:

■ LIST

■ NEWPAGE

■ SKIP

■ PUSH

■ POP.

LIST

LIST regulates the printing or suppression of all statements. Its syntax is:

Syntax
LIST [ON] [MACROS]
 [OFF] [NOMACROS]

[ON]
[OFF]

ON specifies that all subsequent statements are to be printed. OFF suppresses
the printing of all subsequent statements.

[MACROS]
[NOMACROS]

MACROS specifies that macro statements are to be printed if a LIST ON is in
effect. NOMACROS suppresses the printing of macro statements.

System Facilities 14–5

The default is LIST ON MACROS.

Compile Listing

To suppress all CA-Easytrieve Plus listing information, use the following:
LIST OFF
PARM LIST(NOPARM NOFILE)

For more information on the PARM statement, see the “Environment Definition”
chapter.

NEWPAGE

NEWPAGE ejects the printer to the top of the next page before printing the next
line of the source program. Its syntax is:
NEWPAGE

SKIP

SKIP spaces the printer the designated integer number of lines before printing
the next line. Integer must be positive. Its syntax is:
SKIP integer

PUSH

PUSH saves the current status of the listing control indicators. Its syntax is:
PUSH

POP

POP restores the previous status of the listing control indicators. Its syntax is:
POP

PUSH and POP are especially useful in macros to control the listing of the macro
expansion without affecting listing control outside the macro.

14–6 Reference Guide

Compile Listing

Example

The following example illustrates some of the listing control statements:

Input program:
FILE TESTIN
SKIP 1
LIST NOMACROS
%DATADEF
SKIP 1
JOB INPUT(TESTIN)
 DISPLAY NEWPAGE NAME
 STOP

Produces this compile listing:
 1 FILE TESTIN

 2 %DATADEF

 8 JOB INPUT(TESTIN)
 9 DISPLAY NEWPAGE NAME
10 STOP

Diagnostic Format

When syntax errors are detected in the program source, an error message with
the following format is printed:

1. Number of the statement in which the error occurred (A).

2. Seven asterisks to bring attention to the error (B).

3. Diagnostic message (C). This message is either a standard EBCDIC message
or the EBCDIC message translated into Japanese and printed using the DBCS
code system assigned to the system printer. The message type is selected
when the DBCS Options Module is generated. See the Getting Started for
more details.

 2 ERRFIELD W 2 A 1

 (A) (B) (C)
 ┌───────────────────────── ───────────────────┐

 2*******B055 INVALID LENGTH, TYPE OR DECIMAL PLACES - 1

The format of diagnostic messages is also described in the “Diagnostics”
appendix.

Parameter (PARM) Listing

System Facilities 14–7

By default, a complete listing of PARM statement options is produced following
the statement listing. The heading 'OPTIONS FOR THIS RUN - ' precedes this
list. Override is through the LIST NOPARM parameter of the PARM statement.

Compile Listing

CLIST

The CLIST option produces a cross-reference between statement numbers and
the relative storage locations at which the machine language code for the
statements begin. The code for a job can span one or more 4 KB blocks of storage.
A set of entries is produced for each block. A header identifying the program
storage block number on line (A) always prefaces the CLIST. The next line (B)
consists of the compiler name, maintenance level, date and time of the
compilation, and the activity identification. The actual condensed list of offsets is
a line pair: the first line (C) shows the hexadecimal offsets corresponding to the
statement numbers depicted on line two (D) of the pair. These line pairs are
repeated for the length of each activity. END OF PROGRAM is printed at the
end of all activities.
 CLIST

(A) PROGRAM STORAGE BLOCK NUMBER 1

(B) CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-hh.mm-pgmname

(C) OFFSET (HEX) 00F2 011E 0122 0126 0130
(D) STATEMENT NO. 4 5 6 7 8

 END OF PROGRAM

14–8 Reference Guide

Compile Listing

DMAP

Code the DMAP option of the PARM statement to format a printed data map
following the parameter listing. The data map is a table of all files and fields in
the program together with their declared and default attributes. Imported field
definitions also import appropriate information to the DMAP. The following
example shows the overall structure of the DMAP.
DMAP
work fields

file fields

activity 1 report 1 work fields
 summary file fields
 ...
 report n fields
 sum fields

FILE - (0008) FILENAME file-attributes

LOGICAL-RECORD - (008) EMP-JOB-LR

BASE ST DSPL LENGTH FMT DEC OCCURS ED M R KE LVL NAME

 0000 4 N .K . . K.

...
activity n ...
...

 0000 46 A 01 EMPLOYEE
 0028 6 AV 32,767 .. D . .. 02 START-DATE-0415
 0028 2 N 03 START-YEAR-0415
 002A 2 N 03 START-MONTH-0415
 002C 2 N 03 START-DAY-0415

FILE - (0008) FILENAME DLI (DBDNAME)

RECORD - (0009) SKILL ROOT

BASE ST DSPL LENGTH FMT DEC OCCURS ED M R KE LVL NAME

 0000 4 N .K . . D. 01 SKILL_ID-0455

RECORD - (0009) EXPERTISE PARENT : SKILL

BASE ST DSPL LENGTH FMT DEC OCCURS ED M R KE LVL NAME

System Facilities 14–9

Compile Listing

Field Group Header

The first line of the DMAP is an identifying header preceding each field group.
The field group header has the format:
field-type [-(integer)] name

Field-type is either WORK, FILE, or REPORT. When the field type is FILE, the
attributes from your FILE statement definition also display.

field-type

[-(integer)]

Integer is the relative CA-Easytrieve Plus file number or the report group
relative reference number.

name

Name is the filename or report-name being mapped. When a report is being
mapped, a second field group header specifies the relative report reference
number.

Logical Record Display (CA-IDMS)

This CA-IDMS-only portion of the DMAP displays logical record data. VERB

s printed three across.

Record Display (DL/I)

root record and PARENT identifies the

Field Header

Within each field group a field header identifies attributes associated with each
field. The field header has the format:
BASE ST DSPL LENGTH FMT DEC OCCURS ED M R KE LVL NAME

BASE

is the identifier for the storage block in which the field is stored. Only working
storage fields and internally generated work fields have BASE specified.

ST

is a one-character indicator of storage type (W, S, or I).

occurs once for each valid verb. Its values are OBTAIN, STORE, MODIFY, and
ERASE. KEYWORDS are 32-character IDMS-defined name

For DL/I files ROOT identifies the DL/I
DL/I record's parent record.

14–10 Reference Guide

Compile Listing

DSPL

is the hexadecimal representation of the relative displacement of the field from
the beginning of the record or storage block.

LENGTH

FMT

DEC

OCCURS

ED

indicates whether (H) HEX, (B) BWZ, and/or (K) KANJI is specified for the field.

M

identifies the mask associated with the field. Mask indicators A through Y
specify either installation default or programmer specified masks.

R

designates that the R (RESET) option is specified for a W field.

KE

is the indicator for key fields. Possible entries are D (DL/I key) or C (IDMS
CALC key).

LVL

is the level of the field. Levels 2 through 5 are indented and 6 through 50 are at
the same level as 5.

indicates the decimal length of the field in bytes.

identifies the data type, or format, of the fields:
A (ALPHA) - alphanumeric
M (MIXED) - mixed
K (KANJI) - double byte
V (VARYING) - varying length field
B (BINARY) - binary
I (INDEX) - index for the most recent field that is not an
 index.
P (PACKED) - packed decimal
U (UNSIGN) - unsigned packed decimal
Z (ZONED) - zoned decimal.

is the number of decimal positions for a quantitative field.

is the value in the OCCURS clause.

System Facilities 14–11

Compile Listing

NAME

14–12 Reference Guide

NAME 7
NET-PAY 8 23 34
OVERTIME 9 44

is the name of the field.

PMAP

Code the PMAP option to request a formatted map of the compiled code. This
listing is printed after the statement and DMAP listings. The PMAP is prefaced
by a header that identifies the program storage block number. The following
example illustrates the formatted listing of compiled code.
 PMAP

 PROGRAM STORAGE BLOCK NUMBER 1

 0000 BC F0 F032
 ...
 0180 20 PACK 71 3118 5001
 0186 CP 71 3118 6F58
 018C BC 70 B1A6
 0190 21 LA 00 0015
 │ │ │
 │ │ └──generated code
 │ │
 │ └────statement number
 │
 └───relative displacement

The first column of the map in the previous example is the relative displacement
(in hexadecimal) from the origin of the storage block. The statement number
corresponds to the statement listing numbers and marks the beginning of
generated code for that statement. The actual code is next in opcode/operand
format. Interspersed throughout the PMAP are titles and literals as they appear
in your source program. The code to support the STATE and FLOW options for
each statement is not printed.

XREF

The XREF option of the PARM statement causes the production of a
cross-reference listing for all filenames, field names, procedure names, report
names, segment names, and statement labels. This listing follows the statement,
DMAP, and PMAP listings. The following example illustrates the format of the
cross-reference listing.
XREF LONG

SYMBOL DEFINED AT REFERENCES

COMPUTE-OVERTIME 15 27
FLDW 3 37
FLDS 4

Execution Listing

Execution Listing

File Statistics

he files used

me of

c retrieval.

Column (D) is the file access method.

Column (E) is the file format.

Column (F) is the logical record length.

Column (G) is the blocksize (or VSAM control interval size).

Virtual files (VFM) are automatically blocked.

Abnormal Termination
Most programming errors fall into two categories:

■ Syntax errors

■ Execution errors.

When a syntax error is encounted, diagnostic messages that pinpoint the error
are printed and the product terminates after completing the compilation of the
entire program.

When each activity ends, file statistics that provide information on t
during the activity are optionally produced. The file statistics are prefaced by a
header, the compiler name, the maintenance level, the date and ti
compilation, and the activity identification.

Note: Database file statistics are only maintained during automati
FILE STATISTICS - CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-hh.mm-pgmname

 (A) (B) (C) (D) (E) (F) (G)

TESTIN 48 INPUT SAM FIX BLK 150 1800
EZTR001 3 OUTPUT VFM FIX UNBLK 29 N/A

Column (A) is the filename.

Column (B) is the RECORD-COUNT.

Column (C) is the filetype.

System Facilities 14–13

Abnormal Termination

When an execution error is encounted, a diagnostic message for the error is
printed and the product terminates immediately.

If the error was generated by an interrupt code of 1 through 11, an error analysis
report is optionally produced through the ABEXIT parameter of the PARM
statement.

Diagnostic Messages

Syntax Errors

Most of the errors made in programming are syntax errors relating to clerical
mistakes or a misunderstanding of the language being used. With CA-Easytrieve
Plus, simple syntax rules and logical program structure nearly eliminate these
errors. To pinpoint violations, an extensive set of diagnostic messages is
provided (see the “Diagnostics” appendix).

Execution Errors

Also, you can encounter execution errors, most of which are easily remedied.
The execution errors that are intercepted include:

■ Insufficient storage

■ File OPEN errors

■ Table file out-of-sequence

■ Database errors

■ Program interrupts 1 through 11.

You can code DEBUG(FLDCHK) on the PARM statement to request that all
references to data fields are validated at execution time. This validation detects
invalid file field references such as referring to a field in a file after end-of-file.
When FLDCHK is active and an invalid field reference is detected, this message
is produced:
******A010 INVALID FILE REFERENCE - MASTER

By examining the statement involved, you can resolve the great majority of
errors detected at execution time. The error message indicates the number of the
incorrect statement if the STATE or FLOW options of the PARM statement are in
effect. For program interrupts, you can analyze the problem in more depth. For
interrupt codes 1 through 11, the error analysis report and supporting DEBUG
options are provided.

14–14 Reference Guide

Abnormal Termination

The operating system detects execution errors and gives a cross-referenced
diagnostic for such things as input data validity, data set format, illogical access
method requests, security violations, and program interrupts.

Error Analysis Report

There are eight possible sections to the error analysis report as as shown in the
following example:
Section 1
 27 *******A006 PROGRAM INTERRUPT - CODE 7 (DATA EXCP)

Section 2
 INTERRUPT OCCURRED AT 0130 BLOCK 1 FROM EP CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-
 hh.mm-pgmname

Section 3
 INSTRUCTION AT 09D140 IS FA775AA85AB8
 FIRST OPERAND ADDRESS 0A7AA8 CONTENTS 000000000000001C
 SECOND OPERAND ADDRESS 0A7AB8 CONTENTS 0000000000000BB5

Section 4
 FLOWTABLE - MAXIMUM ENTRIES 100
 16 18 31 19 43 20 21 51 27

Section 5
 PSW AT INTERRUPT 078D0007 EC09D146

Section 6
 REGISTERS AT INTERRUPT
 RO 0000001B R1 00097784 R2 000988DC R3 000A7BA0 R4 00097000
 R8 000975B8 R9 000A7FA0 R10 8009865A R11 0009D010 R12 00000017

Section 7
 FILE ID/NAME RECORD ADDRESS RECORD LENGTH STATUS
 0001 SYSPRINT 09EF78 56 ACTIVE
 0002 SYSIN 000000 80 CLOSED
 0003 WORK 000000 0 CLOSED
 0004 EZTPRE 09C8F8 8 CLOSED
 0005 TESTIN 09C8F8 150 ACTIVE

Section 8
 WORKING STORAGE

 BLOCK ADDRESS

 0001 097000
 0002 OA7000

Section 1

Section 1 identifies the statement number where the interrupt occurred (if the
STATE or FLOW option of the PARM statement were coded) and the type of
interrupt.

System Facilities 14–15

Section 2

Abnormal Termination

Section 2 gives the relative displacement of the failing machine instruction from
the entry point of the indicated activity.

Section 3

Section 3 gives the storage location of the failing machine instruction and its
hexadecimal image. It also lists the operands of the instruction and their storage
addresses.

Section 4

Section 4 is the optional FLOW table.

If the FLOW option is in effect and an abnormal termination occurs, a formatted
list is printed consisting of statement numbers. The list is prefaced by the header
'FLOW TABLE - MAXIMUM ENTRIES 100', where the '100' is set at installation
time or by FLOWSIZ on the PARM statement (see the “Environment Definition”
chapter). The list of statement numbers follows the header and is read
left-to-right, top-to-bottom, corresponding to the most recently executed
statements. The flow table is created in a wraparound manner.

Section 5

14–16 Reference Guide

statement number 27.
24 ******** CAUSE A DATA EXCEPTION *********
25 DEFINE BADDATA W 2 A VALUE '$$'

Section 5 shows the Program Status Word (PSW) at the time of the interrupt.

Section 6

Section 6 lists the general purpose registers at the time of the interrupt.

Section 7

Section 7 lists the files used, the address of the current record of each file, the
record length of each file, and the status of the file.

Section 8

Section 8 lists the starting location for each working storage block.

For OS/390 and z/OS, the SNAP dump option prints the standard (formatted)
portion first, followed by the save area trace and the storage areas.

Cause A Data Exception

The enhanced debugging aids only process program interrupt codes 1 through
11. In the following example, we contrive an interrupt code 7 (data exception) at

Abnormal Termination

26 DEFINE WORSTDATA BADDATA 2 N 0
27 WORSTDATA = 1 + WORSTDATA
28 ******** CAUSE A DATA EXCEPTION *********

To generate the data exception, define an alpha field and give it an initial value
(statement 25), then redefine the alpha field as numeric (statement 26). When the
field WORSTDATA is used in a numeric computation, the operating system
detects the invalid numeric value '$$' and generates a data exception. The
interrupt is passed and an error analysis report is printed.

Analyzing the Report

When you analyze the error analysis report, first determine the statement
number where the interrupt occurred. There are numerous methods for finding
the statement:

Section 1

If the STATE or FLOW options were active, the error analysis report contains the
statement number (27) in the message.
27 *******A006 PROGRAM INTERRUPT - CODE 7 (DATA EXCP)

If you did not specify STATE or FLOW, you can locate the failing statement in
two other ways:
INTERRUPT OCCURRED AT 01BC BLOCK 1 FROM EP CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-
hh.mm-pgmname

Section 2

If the CLIST option is in effect, locate program storage block 1 from entry point
'CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-hh.mm-pgmname' in the CLIST. When
that is found, scan the offsets until the displacement (01BC in this case) is equal
to or between two offsets.

If the displacement is equal to one of the offsets, the corresponding statement
number is the failing statement. If the displacement is between two offsets, the
lower offset corresponds to the failing statement, as illustrated in the following
example:
PROGRAM STORAGE BLOCK NUMBER 1 CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-hh.mm-pgmname
 OFFSET (HEX) ... 0190 01A6 01D4 ...
STATEMENT NO. ... 21 27 29 ...

System Facilities 14–17

Abnormal Termination

If the PMAP option is in effect, locate program storage block 1 from entry point
'CA-EASYTRIEVE Plus v.r yymm-mm/dd/yy-hh.mm-pgmname' in the PMAP listing.
Scan down the offsets until the displacement (01BC) is found. When that is
found, scan up to the nearest CA-Easytrieve Plus statement number (27). That is
the failing statement.
0190 21 LA 00 0015
...
 BALR EF
01A6 27 LA 00 001B
01AA L F0 3158
01AE BALR EF
01B0 ZAP 70 65C0 6F48
01B6 PACK 71 65D0 6F50
01BC AP 77 65C0 65D0
01C2 TM 03 65C7
...

Section 3

Section 3 of the error analysis report identifies the actual machine instruction
image and the operands involved in the failure.
INSTRUCTION AT 0ED1CC IS FA7765C065D0
FIRST OPERAND ADDRESS 0F75C0 CONTENTS 000000000000001C
SECOND OPERAND ADDRESS 0F75D0 CONTENTS 0000000000000BB5

As you can see, the instruction image is for an AP (add packed) instruction and
the second operand is not a valid packed number; thus the data exception.
('0BB5' is the result of packing '5B5B' ($$), before the add.)

Section 4

Section 4 of the error analysis report is the FLOW trace. It shows the
immediately preceding statement numbers. The last number listed is the failing
statement.
FLOW TABLE - MAXIMUM ENTRIES 100
 16 17 18 31 19 43 20 21 51 27

Section 5

Section 5 displays the operating system's Program Status Word (PSW) that you
can use to derive the address of the failing instruction in the dump.

Section 6

Section 6 follows the PSW with a formatted listing of the general purpose
registers at the time of interrupt. You can use the contents of the register with
the PMAP listing (or the dump) to do more detailed, classical debugging.

14–18 Reference Guide

Abnormal Termination

Section 7

Section 7 locates file fields for error determination. To locate the desired field,
first determine the file that contains the field by referencing the DMAP listing.
When you locate the desired field in the DMAP, add the displacement (DSPL -
from the DMAP) and the corresponding RECORD ADDRESS from the error
analysis report. This gives the storage location for the desired field. For example,
in the following example, if the desired field was SOCSECNUM, you would
reference the DMAP listing and find:
DMAP

WORK FIELDS
 ...
FILE - (0005) TESTIN
 BASE DSPL LGH DEC TYPE OCCR MASK EDIT NAME

 ... 0003 5 PACKED A SOCSECNUM
 ...

then referencing the error analysis report, you would find:

FILE ID/NAME RECORD ADDRESS RECORD LENGTH STATUS
 ...
0005 TESTIN 0EF8F8 150 ACTIVE
 ...
adding: RECORD ADDRESS OEF8F8
to: DSPL 0003

you get storage location: 0EF8FB

which is the storage address of the field SOCSECNUM.
in the SNAP dump, that location would appear as:

0EF8E0.... F4F0F102 5305228C *......*

System Facilities 14–19

Abnormal Termination

Section 8

Section 8 locates working storage fields in a dump. To locate the desired field,
reference the DMAP listing and determine the working storage block number
and the displacement of the field. Now, add the displacement (DSPL) to the
corresponding BLOCK ADDRESS from the error analysis report. For example, if
you want to locate the field WORSTDATA in the dump, reference the DMAP
listing and find:
DMAP

WORK FIELDS

 BASE 0 DSPL LGH DEC TYPE OCCR MASK EDIT NAME
 0002 W 0F50 2 ZONED WORSTDATA
...

then referencing the error analysis report, you would find:

WORKING STORAGE

 BLOCK ADDRESS

 0001 0E7000
 0002 0F7000

 adding: BLOCK ADDRESS 0F7000
 to: DSPL 0F50

 you get storage location: 0F7F50

which is the storage address of the field WORSTDATA.
In the dump the field appears as:

0F7F40 5B5B0000 *.......*

14–20 Reference Guide

Chapter

15 Macros

This chapter discusses the CA-Easytrieve Plus macro facility. This feature
permits often-repeated source statements to be duplicated easily for any
program. This facility enables the language to be tailored to the programming
standards of your installation.

Even the most casual programmer can use macros. The macro library is a very
convenient place to store the data definition statements of frequently used files.
This use of the macro facility provides standardized data-naming conventions.

This chapter first discusses how macros are invoked using the macro invocation
statement. Second, it discusses the two parts of a macro:

■ The macro prototype statement

■ The macro body.

This chapter concludes with a description of macro processing and parameter
substitution.

Macro Invocation Statement
The macro invocation statement consists of a macro name preceded by a percent
(%) sign and followed by an optional subtype for use with VSE Source Statement
Libraries. Its syntax is:

Syntax
%macro-name [.subtype]

%macro-name

Macro-name is the name of a previously stored macro that you want to invoke.

Macros 15–1

Macro Invocation Statement

[.subtype]

For VSE users of Source Statement Libraries, subtype is an optional
one-character subtype for an SSL member. It is delimited from the macro-name
(book name) with a period(.). If subtype is not coded, the default subtype is
taken from the CA-Easytrieve Plus Options Table. The default subtype for
CA-Easytrieve Plus macros stored in Source Statement Libraries is Z.

Invoking Macros

To invoke a macro, code a macro invocation statement any place within the
CA-Easytrieve Plus source program. Macro invocation statements cause a series
of statements to be retrieved from the macro library and included as source
statements in the program. The series of statements can be modified by
parameters supplied on the macro invocation statement.

15–2 Reference Guide

Macro Library

Macro Library

Macros 15–3

must supply the correct library control code on a CONTROL record.

Macro statements are stored and maintained in a macro library. The MACRO
Options Table entry specifies the macro library storage access method. The types
of access methods are:

■ PAN—macros stored in a CA-Panvalet library and maintained through
CA-Panvalet utilities.

■ LIBR—macros stored in a CA-Librarian library and maintained through
CA-Librarian utilities.

■ PDS—(OS/390 and z/OS only) macros stored in a partitioned data set.

■ SSL—(VSE only) macros stored in a VSE Source Statement Library.

■ USER—any user-supplied library facility that you can use for the macro
library.

■ VSAM—a specially formatted VSAM data set that you can use as the macro
library.

Macro Library Security

The following techniques protect your macro statements.

CA-Panvalet

In addition to having the maintenance and backup capabilities provided by
CA-Panvalet, CA-Easytrieve Plus gives you the ability to secure the macro
against unauthorized access. This is accomplished through a security access
code, which can be applied to a CA-Panvalet member, and by the CA-Panvalet
library control codes.

Security Access Code

A security access code applies to an individual CA-Panvalet library member.
You must supply the security access code on an ACCESS record before a secured
member can be retrieved.
ACCESS 'eight-byte code'

Library Control Codes

Library control codes apply to an entire CA-Panvalet library or libraries. A
library control code is the sum of the CA-Panvalet installation code and a
library's security code. To gain access to a secured CA-Panvalet library, you

Macro Library

CONTROL 'literal-1'

The string 'literal-1' must be in quotes and can be 1-8 characters long. The
CONTROL record is not printed. The CONTROL record must be on a record by
itself. For more information on library control codes, see the CA-Panvalet System
Management Guide.

Note: The CONTROL record used to pass CA-Panvalet control codes has no
relation at all to the CA-Easytrieve Plus CONTROL statement used for control
breaks.

CA-Librarian

CA-Librarian manages and maintains the CA-Easytrieve Plus macro statements
that are stored in its libraries. CA-Easytrieve Plus requires access to the
CA-Librarian modules FAIROPN, FAIRMOD, FAIRREC, FAIRNTE, FAIRPNT,
and FAIRCLS for the processing of this macro interface. The modules are loaded
by CA-Easytrieve Plus during program compilation and therefore, the
CA-Librarian product library must be available.

Maintenance

The macros are maintained, added, updated, and deleted on the CA-Librarian
library by the services of CA-Librarian. See the CA-Librarian Command Reference
(Batch) Manual for details on maintenance procedures.

Security

If your CA-Librarian data set is protected from access by the use of a
“management code,” then this access is secured with CA-Easytrieve Plus.

To gain access to a secured CA-Librarian data set, you must supply the correct
“management code” on the CA-Easytrieve Plus CONTROL record.
CONTROL 'literal-1'

The string 'literal-1' must be in quotes and conform to the CA-Librarian rules.
The CONTROL record is not printed. The CONTROL record must be on a line
by itself. For more information on library “management codes,” the -MCD
statement, see the CA-Librarian Lock Facility Manual.

PDS/SSL

15–4 Reference Guide

OS/390, z/OS, and VSE provide the capability, through program products, such
as RACF or ACF2, to secure an entire macro library.

Macro Definition

USER

Security functions of a USER macro library must be provided by the USER
macro interface.

VSAM

VSAM provides the capability of protecting the macro library through the use of
VSAM password protection. Before you can retrieve a macro from a secured
library, you must supply the library password on an ACCESS record prior to the
first macro call.
ACCESS 'eight-byte password'

For both CA-Panvalet and VSAM macro storage access methods, the ACCESS
record can appear anywhere in the CA-Easytrieve Plus program prior to the
retrieval of the macro, and remains in effect until the next ACCESS record is
encountered. The ACCESS record is not printed. The ACCESS record must be on
a record by itself. See the the “Macro Libraries” appendix in the Getting Started
for detailed information about creating and maintaining macro libraries.

Macro Definition
Macros are composed of three parts:

1. The macro prototype defines the parameters of the macro.

2. The macro body contains the CA-Easytrieve Plus statements to be generated
by a macro invocation statement.

3. The optional macro termination command.

Macros 15–5

Macro Definition

The name of a macro is the same as the member name in the macro storage
library.

Prototype Statement

The prototype statement must be the first statement of a macro. Optionally, it
defines the parameters of the macro. Either positional and/or keyword
parameters can be used.

Syntax

The syntax of the prototype statement is:
 [] []
MACRO [literal][positional-] ... [keyword-] ...
 [parameters] [parameters]
 [] []

15–6 Reference Guide

Macro Definition

Operation

Macros 15–7

...

MACRO must be the first word on a prototype statement.

[literal]

Literal is an optional parameter that specifies the number of positional
parameters on the prototype statement. It is required only when you use
keyword parameters. You must code the value of literal as zero when you
specify only keyword parameters on the prototype statement.

[positional-parameters]

You must code positional-parameters before any keyword-parameters. The
positional values are substituted according to their position on the prototype
statement.

[keyword-parameters]

Keyword-parameters have two parts: the keyword name and the default value.

Positional Parameters

Use positional parameters when a value is always required for the parameters
each time the macro is invoked. Frequently-used parameters are often positional,
since you need to code only the value of the parameter.

Keyword Parameters

Use keyword parameters:

■ To help keep track of a large number of parameters

■ For optionally used parameters

■ To specify a default value for parameters.

Prototype Examples

The following series of examples depict the coding of macro prototype
statements:

Macro with No Substitution Parameters
MACRO
...

Instream Macros

Macro with Only Positional Parameters

15–8 Reference Guide

the library, the instream macro is used.

MACRO POS1 POS2
...
...

The number of positional parameters is not indicated. You could have coded the
optional parameter as a '2'.

Macro with Only Keyword Parameters
MACRO 0 KEY1 VALUE1 KEY2 VALUE2
...
...

Code the number of positional parameters as zero. This is a required parameter
when you use keyword parameters.

Macro with Positional and Keyword Parameters
MACRO 1 POS1 KEY1 VALUE1
...
...

Macros with both positional and keyword parameters require that you supply
positional parameters first.

Macro Body

The macro body consists of a series of model and actual CA-Easytrieve Plus
statements. The model statements contain one or more parameters that are
replaced by the values of corresponding parameters on the prototype statement.

Macro Termination Command

The optional macro termination command is used at the end of a macro.
MEND

This statement is required when updating Source Statement Libraries with LIBR.

Instream Macros
Macro statements can also be included in the source input to CA-Easytrieve Plus.
This capability is particularly useful for testing new macros prior to storing them
in the macro library. When an instream macro has the same name as a macro in

Instream Macros

Syntax

Instream macros are placed at the beginning of the source input prior to any
other statements. Each instream macro is bounded by an MSTART and an
MEND statement. The format of these statements is:
MSTART macro-name
MACRO 2 NUMBER RESULT
**
* *
* NAME: MACRO EXAMPLE *
* CALCULATE THE CUBE OF A NUMBER *
* *
* FUNCTION: THIS MACRO CALCULATES THE CUBE OF A NUMBER. *
* *
**
DEFINE CUBE_NUMBER_ S 6 N VALUE 00000
 CUBE_NUMBER_ = &NUMBER * &NUMBER * &NUMBER
 &RESULT = CUBE_NUMBER_
MEND

Operation
macro-name

Macro-name is the name of the macro. It can be from one to eight characters
long. The first character must be alphabetic.

Example

The following example illustrates the use of instream macros.

Statements:

Macros 15–9

Macro Processing

MSTART EXMACRO
MACRO 2 NUMBER RESULT
PUSH
SKIP 1
SKIP 1
LIST OFF

* *
* NAME: MACRO EXAMPLE *
* CALCULATE THE CUBE OF A NUMBER *
* *
* FUNCTION: THIS MACRO CALCULATES THE CUBE OF A NUMBER. *
* *

POP
SKIP 1
DEFINE CUBE_NUMBER_ S 6 N VALUE 000000
SKIP 1
 CUBE_NUMBER_ = &NUMBER * &NUMBER * &NUMBER
 &RESULT = CUBE_NUMBER_
SKIP 1
MEND

JOB INPUT NULL NAME MACROI

*
DEFINE CUBED_RESULT W 6 N VALUE 000000 MASK (J 'ZZZZZ9')

%EXMACRO 3 CUBED_RESULT
 DISPLAY CUBED_RESULT
 STOP

Produce:

 27

Macro Processing
Macro processing occurs whenever a macro invocation statement appears in a
CA-Easytrieve Plus program. Designate a macro invocation by prefixing a '%'
(percent sign) to the macro name. Each macro invocation retrieves a fresh copy
of the macro from the library and, if necessary, replaces parameters with their
corresponding values from the macro invocation statement or the prototype
statement.

15–10 Reference Guide

Macro Processing

Parameter Substitution

The rules for substituting macro parameters are the basic rules-of-syntax and the
following:

1. You must specify positional parameter values on the macro invocation
statement in the same order that they appear on the prototype statement.

2. The value of a null string is given to unsupplied positional parameter values.
That is, the parameter is treated as nonexistent.

3. You can specify keyword parameter values in any order on the macro
invocation statement.

4. Unsupplied keyword parameter values are given the default value from the
prototype statement.

5. Within the body of a macro, the & (ampersand) is the prefix concatenated to
parameter substitution words. Spell parameter substitution words exactly
like their counterparts on the macro prototype except for the leading &.
Delimit parameter substitution words by a ' ' (space) or a '.' (period). Use the
'.' delimiter when the substituted value is to be concatenated with another
word. The '.' is deleted when the parameter is replaced by its value. When
you desire to have an '&' character in the macro body remain as an '&'
character, you must code two consecutive ampersands (&&), even if the '&'
is in a comment.

A macro invocation statement that is within the body of a macro (nested) is
treated as if it were outside of the macro. That is, no special consideration is
necessary. There is no limit to the nesting level.

Examples

Positional Parameter Substitution

The second parameter value (' ') is supplied simply to maintain correct
positioning for the third parameter ('FB (150 1800)').
Macro invocation	Macro member = FILE
 |
 ... | MACRO NAME TYPE FORMAT
%FILE TESTIN ' ' + | FILE &NAME &TYPE &FORMAT
 'FB (150 1800)' |
 ... |

 Produces

 ...
 FILE TESTIN FB (150 1800)
 ...

Macros 15–11

Macro Processing

Keyword Parameter Substitution

The default value of ' ' (space) for the second keyword entry (TYPE) is a good
technique to use for seldom needed parameters.

Macro invocation	Macro member = FILE
 |
 | MACRO 0 NAME FILEA +
%FILE NAME TESTIN + | TYPE ' ' +
 FORMAT 'V (1000)' + | FORMAT 'FB(150 1800)'
 TYPE VIRTUAL |
... | FILE &NAME &TYPE &FORMAT

 Produces

 ...
 FILE TESTIN VIRTUAL V (1000)
 ...

‘&’ and ‘.’ in a Macro

The following example illustrates the use of the '&' character within a macro
body statement and concatenated substitution words. The extra '&' and the
concatenation '.' characters are not part of the resulting statements.
Macro invocation	Macro member = FILE
 |
 ... | MACRO NAME PREFIX
%FILE TESTIN NEW | FILE &NAME
 ... | &PREFIX.-SSN 1 9 N
 | &PREFIX.-MAIL 10 75 A, +
 | HEADING 'NAME && ADDRESS'
 |

 Produces

 ...
 FILE TESTIN
 NEW-SSN 1 9 N
 NEW-MAIL 10 75 A, +
 HEADING 'NAME & ADDRESS'
 ...

15–12 Reference Guide

Appendix

A Utility Macros

CA-Easytrieve Plus provides two utility macros, CBLCNVRT and STRSRCH.
The following sections describe these macros.

CBLCNVRT
The CBLCNVRT routine converts COBOL file and field definitions to their
CA-Easytrieve Plus equivalent. CBLCNVRT determines the file characteristics,
the field name, and the attributes for each COBOL field.

The converted file and field definitions are listed in a report and written to a file.

Syntax
 %CBLCNVRT infile [NUMDEF number] [QUOTE option] [SYSTEM{OS }] [COBOL {VS }]
 [{DOS}] [{II }]
 [] [{II12}]
 [] [{II13}]
 [] [{I122}]
 [] [{I212}]

infile

Specify the name of the input file to CBLCNVRT from which the CA-Easytrieve
Plus definitions are generated. This file is not the actual COBOL source. It is a
glossary table generated from a successful compile of the COBOL definitions. To
write the glossary table to a file in OS and DOS, see the Glossary Table
Generation section. A valid name is the ddname (DLBL) in the JCL that defines
the file containing the glossary table.

[NUMDEF number]

Specify the maximum number of data descriptions grouped under a single level
01 description, plus one. A valid value for number is an actual numeric value.
The value is 250.

Utility Macros A–1

CBLCNVRT

[QUOTE option]

Specify the alphabetic literal delimiter in the COBOL field definitions. There are
two valid values for this option:

■ ''''''—Six consecutive single quotes indicate that the single quote character is
used as the alphabetic delimiter. This is the default.

■ ' " '—A doulbe quote character within single quotes specifies that a double
quotation symbol is used as the alphabetic delimiter.

[]
[SYSTEM {OS }]
[{DOS}]
[]

This optional parameter specifies whether CBLCNVRT is to be run on an OS or
DOS system. The default value is OS.

[]
[COBOL{VS }]
[{II }]
[{II13}]
[{II12}]
[{I122}]
[{I212}]
[]

This optional parameter specifies to CBLCNVRT which version of the COBOL
compiler DMAP layout and Glossary file processing to use. Note the following:

■ If COBOL II is in use, this option is necessary.

■ If COBOL for OS/390, z/OS, and VM 1.2.0 is in use, the II12 option is
required.

■ If COBOL for MVS and VM 1.2.2 is in use, the I122 option is required.

■ If COBOL for OS/390 and VM 2.1.2 is in use, the I212 option is required.

■ If COBOL II, Version 1 Release 3 is in use, the II13 option is required.

The default is set to run with the VS COBOL compiler.

A–2 Reference Guide

CBLCNVRT

Operation: Standalone-Report

Utility Macros A–3

COBOL field definitions.

■ JUSTIFIED RIGHT in COBOL field definitions is ignored.

CBLCNVRT converts file and field definitions, prints a report showing the
convert definitions, and writes the definitions to a file called EASYPGM. The
input file CBLCNVRT is the glossary table produced from a successful compile
of the COBOL definitions. This file must be created prior to the execution of
CBLCNVRT. To create this file in OS and DOS, see the Glossary Table
Generation section in this routine. The file EASYPGM has the following
characteristics:

■ Fixed blocked

■ 80-byte records blocked 3200

Since most executions of CBLCNVRT are invoked with the same parameters, it is
possible to link-edit the routine into an appropriate library. To convert various
definitions, you can create the new glossary table and execute the link-edit in the
existing library. In most cases, this will save a significant amount of execution
time.

Operation: Database

CBLCNVRT cannot be used in a database application.

Limitations

The following list identifies the current rules and limitations of CBLCNVRT:

■ On the FILE CONTROL statement, under the ASSIGN clause, there can be
only one SYSTEM NAME parameter specified.

■ Levels 66 and 88 are ignored. No output or warnings are generated.

■ No CA-Easytrieve Plus MASKs are generated from COBOL PICTURE
parameters.

■ No CA-Easytrieve Plus VALUE parameters are generated from COBOL
VALUE parameters.

■ COBOL indexes are not processed.

■ COBOL fields containing OCCURS parameters are converted into the
CA-Easytrieve Plus OCCURS equivalent. However, you must modify the
generated CA-Easytrieve Plus definitions and add the INDEX parameter to
allow a field containing an OCCURS parameter to be indexed.

■ You must define an extra CA-Easytrieve Plus index for the second and all
subsequent consecutive DEPENDING ON OCCURS statements in the

CBLCNVRT

■ BLANK WHEN ZERO in COBOL field definitions is ignored.

■ SIGN IS LEADING/TRAILING in COBOL field definitions is ignored.

■ LINKAGE and COMMUNICATION chapters are ignored.

■ Any field longer than 32,767 bytes is output as a 32,767-byte field followed
appropriate comment.

■ Up to 10,000 duplicates of the same field name are supported.

■ Copybooks for any field definitions must be expanded during the compile
when the glossary table is created.

■ Any binary field longer than four-bytes is converted to alphanumeric, and
the output listing produces an appropriate comment.

■ Missing periods in COBOL source code may cause unpredictable results and
are not supported.

■ The CBLCNVRT routine creates a CA-Easytrieve Plus table. Depending on
the input data, the default allocation of 256 table entries may be exceeded.
Message A008 informs you of this. For a further explanation of this message,
see the CA-PanAUDIT Plus Messages and Codes guide. To increase the
allocation for table entries, the CA-Easytrieve Plus Options Table must be list
edited with a new maximum value. For details, consult the Getting Started.

Glossary Table Generation

The glossary table produced from the compilation of the COBOL field
definitions drives the conversion process. The glossary table file must be defined
with fixed-length 121-byte records for VS COBOL (COBOL VS) or 133-byte
records for COBOL II (COBOL II). It is produced during a successful compile of
the COBOL statements.

In OS systems, the glossary table is generated when certain parameters are
specified in the PARM chapter of the EXEC card. See the OS Creation of
Glossary Table File section. SYSPRINT must be directed to a sequential file.

In DOS systems, the glossary table is generated by specifying certain parameters
// OPTION card. Also, SYS006 must be assigned to a sequential file. The control:
CBL LVL=A,NOCLIST,NOCATALR

must be specified on a control card input to the COBOL compiler. See the DOS
Creation of Glossary Table File section.

A–4 Reference Guide

CBLCNVRT

Examples
The following examples demonstrate the creation of the glossary table file for OS
or DOS.

OS Creation of Glossary Table File

VS COBOL Compiler:
//STEP EXEC PGM=IKFCBL00,
// PARM='DMAP,SOURCE,NOBATCH,L120,NOLOAD,NODECK,NONUM,LANGLVL(2)'
//SYSPRINT DD DSN=GLOSSARY.TABLE,DISP=(NEW,CATLG),
// DCB=(LRECL=121,RECFM=F),SPACE=(zzz, (xxx,yy)),
// UNIT=SYSDA,VOL=SER=volser
 .
 .
 OTHER NECESSARY JCL
 .
 .
//SYSIN DD *
 .
 .
 COBOL DEFINITIONS
 .
 .
/*

Post VS COBOL Compiler:

//STEP 1 EXEC PGM=IGYCRCTL,
// PARM='MAP,SOURCE,NOOBJECT,NODECK,FLAG(I)'
//SYSPRINT DD DSN=GLOSSARY.TABLE,DISP=(NEW,CATLG),
// DCB=(LRECL=133,RECFM=F),SPACE=(zzz,(xxx,yy)),
// UNIT=SYSDA,VOL=SER=volser
 .
 .
 OTHER NECESSARY JCL
 .
 .
//SYSIN DD *
 .
 .
 COBOL DEFINITIONS
 .
 .
/*

This example illustrates the techniques used to write the glossary table to a
second file. To produce the correct information in the glossary table data set, the
PARM chapter of the EXEC card must be coded as is in the example.

JCL referring to the glossary table data set must be coded in the program that
calls CBLCNVRT. The ddname must also be specified as the infile parameter on
the CBLCNVRT invocation statement.

Utility Macros A–5

CBLCNVRT

DOS Creation of Glossary Table File
// OPTION SYM,LIST,NODECK,NOLINK,NOLISTX,NOLOG
// ASSGN SYS006,DISK,VOL=volser,SHR
// DLBL IJSYS06,'GLOSSARY.TABLE'
// EXTENT SYS006,volser,1,0,start,lgth
 .
 .
 OTHER NECESSARY JCL
 .
 .
// EXEC FCOBOL
CBL LVL=A,NOCLIST,NOCATALR
 .
 .
 COBOL DEFINITIONS
 .
 .
/*

This example illustrates the techniques used to write the glossary table to a
second file. SYS006 must be assigned to the file. The following control card must
be coded immediately following the EXEC statement for the COBOL compiler:
CBL LVL=A,NOCLIST,NOCATALR

To produce the correct information in the glossary table data set, the following
parameters must be specified on the // OPTION statement:
// OPTION SYM,LIST,NODECK,NOLINK,NOLISTX,NOLOG

JCL referring to the glossary table data set must be coded in the program that
calls CBLCNVRT. The DLBL filename must also be specified as the infile
parameter on the CBLCNVRT invocation statement.

Example Definitions

The following example shows the COBOL field definitions, the required
CBLCNVRT JCL, the invocation statement for OS and DOS, and the output
generated by CBLCNVRT.

A–6 Reference Guide

CBLCNVRT

COBOL Field Definitions
IDENTIFICATION DIVISION.
PROGRAM-ID. PAPLUS.
REMARKS. HERE ARE SOME FINE REMARKS.
ENVIRONMENT DIVISION.
INPUT-OUTPUT Section.
FILE-CONTROL.
 SELECT FILE-1 ASSIGN TO UT-3375-S-DDNAME1.
DATA DIVISION.
FILE Section.
FD FILE-1
 BLOCK 1600 CHARACTERS
 RECORD CONTAINS 16 CHARACTERS
 LABEL RECORDS ARE STANDARD.
01 WORK-RX.
 05 WORK-XX.
 10 WORK-CX PICTURE X.
 10 CTBL-A.
 15 CT-CODEX PICTURE X.
 15 CMP-PAX PICTURE S9(4)V99 COMP SYNC.
 15 CMP-HRX PICTURE S9(3) COMP SYNC.
 15 CMP-NX PICTURE X(5).
 05 WORK-X15 PIC X.
 WORKING-STORAGE SECTION.
 01 FIELD-TYPE.
 05 SHORT-ONE.
 10 BYTE-ONE-A PIC A(999) OCCURS 4.
 10 BYTE-ONE-B PIC S99999 COMP OCCURS 45.
 05 SHORT-TWO REDEFINES SHORT-ONE.
 10 BYTE-TWO-A PIC X OCCURS 30.
 10 BYTE-TWO-B PIC S999999 COMP OCCURS 30.
 10 BYTE-TWO-C PIC X OCCURS 30.
 05 SHORT-THREE.
 10 BYTE-THREE-A PIC S999 COMP OCCURS 45.
 10 BYTE-THREE-B PIC X OCCURS 45.
 77 DECIMAL-POINT1 USAGE DISPLAY PIC 999.99.
 PROCEDURE DIVISION.
 OPEN INPUT FILE-1.
 CLOSE FILE1-1.
 STOP RUN.

OS JCL and Input
//STEP1 EXEC PGM=EZTPA00
//GLOSTAB DD DSN=GLOSSARY.TABLE,DISP=SHR
//EASYPGM DD DSN=cblcnvrt.output,DISP=(new,catlg),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3200),SPACE=(zzz,(xxx,yy)),
// UNIT=SYSDA,VOL=SER=volser
 .
 .
 OTHER NECESSARY JCL
 .
 .
// SYSIN DD *
%CBLCNVRT GLOSTAB
/*

Utility Macros A–7

STRSRCH

DOS JCL and Input
// ASSGN SYS006,DISK,VOL=volser,SHR
// DLBL GLOSTAB,'GLOSSARY.TABLE'
// EXTENT SYS006,volser,1,0,start,lgth
// ASSGN SYSnnn,DISK,VOL=volser,SHR
// DLBL EASYPGM,'cblcnvrt.output'
// EXTENT SYSnnn,volser,1,0,start,lgth
 .
 .
 OTHER NECESSARY JCL
 .
 .
// EXEC EZTPA00
%CBLCNVRT GLOSTAB SYSTEM DOS
/*

Output
 FILE DDNAME1 FB (00000016 00001600)
 WORK-RX 1 16 A
 WORK-XX WORK-RX 15 A

ions for the
ions will be output in

on character.

STRSRCH
The STRSRCH macro provides a rapid string search that returns the position of
the search pattern within the target string or returns a zero if the search pattern
does not occur in the target string.

 WORK-CX WORK-XX 1 A
 CTBL-A WORK-XX +1 14 A
 CT-CODEX CTBL-A 1 A
 CMP-PAX CTBL-A +3 4 B 2
 CMP-HRX CTBL-A +7 2 B 0
 CMP-NX CTBL-A +9 5 A
 WORKX-15 WORK-RX +15 1 A
 FIELD-TYPE W 4311 A +
 SHORT-ONE FIELD-TYPE 4176 A +
 BYTE-ONE-A SHORT-ONE 999 A +
 OCCURS 4
 BYTE-ONE-B SHORT-ONE +3996 4 B 0 +
 OCCURS 45
 SHORT-TWO SHORT-ONE 180 A
 BYTE-TWO-A SHORT-TWO 1 A +
 OCCURS 30
 BYTE-TWO-B SHORT-TWO +30 4 B 0 +
 OCCURS 30
 BYTE-TWO-C SHORT-TWO +150 1 A +
 OCCURS 30
 SHORT-THREE FIELD-TYPE +4176 135 A
 BYTE-THREE-A SHORT-THREE 2 B 0 +
 OCCURS 45
 BYTE-THREE-B SHORT-THREE +4266 1 A +
 OCCURS 45
 DECIMAL-POINT1 W 6 A

This output contains the CA-Easytrieve Plus file and field definit
COBOL field definitions. The CA-Easytrieve Plus definit
columns 1 through 72 with a '+' used as the continuati

A–8 Reference Guide

STRSRCH

Syntax
%STRSRCH pattern pattern-length target target-length position +
 {MAXPAT integer} {MAXTRG integer}

pattern

This alpha field or literal is the value for which to search.

pattern-length

This numeric field or literal is the length of the pattern for which to search. It
does not necessarily have to specify the entire defined length of the pattern field.
It may be less than that length Only the specified number of characters will be
considered.

target

This alpha field or literal is the target string to be searched.

target-length

This numeric field or literal is the length of the target string. As with the
pattern-length, it does not necessarily have to specify the entire defined length of
the target field. If it is less than that length, only the specified number of
characters is considered.

position

This numeric field is where the result of the search is returned. A zero indicates
that the pattern was not found in the target string. Any other value indicates the
position in the target string where the first character of the pattern occurs.

MAXPAT integer (Optional)

This keyword parameter specifies the maximum possible character size of the
search pattern. The default is 64.

MAXTRG integer (Optional)

This keyword parameter specifies the maximum possible character size of the
target string. The default is 4096.

Note: MAXPAT and MAXTRG are used to define storage and need not be
changed unless the maximum possible field sizes are greater than the defaults.

Utility Macros A–9

STRSRCH

Operation: Inline

The STRSRCH macro generates no output. It can be used alone, in conjunction
with other routines, or with CA-Easytrieve Plus logic.

Operation: Database

No changes in the specification of parameters are required to use STRSRCH with
database files. For files with variable length records, the CA-Easytrieve Plus
defined field RECORD-LENGTH may be used for the “target-length” parameter,
unless you do not wish to search the entire input record.

Notes

This macro uses an algorithm developed by Robert S. Boyer and J. Strother
Moore and discussed in their article “A Fast String Searching Algorithm” in
Communications of the ACM, Volume 20, Number 10 (October 1977), pages
762-772.

The Boyer-Moore algorithm is further discussed by Richard Wiggins and Paul
Wolberg in “Searching for Strings with Boyer-Moore,” Computer Language,
Volume 3, Number 11 (November, 1986), pages 28-42.

The STRSRCH macro and all documentation were written and are copyright (c)
1987 by J. Russell Jones, HCA/Wesley Medical Center, 550 N. Hillside, Wichita,
KS 67212 and are hereby placed in the public domain and may be used and
distributed freely as desired provided that full credit be given to both the author
and HCA/Wesley Medical Center in any documentation accompanying such
use.

A–10 Reference Guide

Appendix

B Diagnostics

CA-Easytrieve Plus provides a comprehensive set of diagnostic messages that
describes the types of errors that can occur when a program is compiled and
executed.

Diagnostic messages fall into two groups that describe:

■ Operational messages

■ Program syntax errors.

 ID Message Supplement

Diagnostic Message Format

All diagnostic messages conform to the same format:
*******XNNN X------------X - S------------S

 Message Diagnostic Message

■ The message ID, a four-character code, identifies each error message. The
first character of the message ID designates the type of error. Message IDs
beginning with the character A identify operational errors. Errors beginning
with a B identify program syntax errors.

■ The diagnostic message is a description of the detected error.

■ The message supplement is optional, depending on the diagnostic message
and context of the message. If possible, a message supplement identifies the
particular object that is in error.

Operational Diagnostic Messages
The following is a list of operational diagnostic messages with brief explanations
for each.

A001 FILE OPEN ERROR - filename

Diagnostics B–1

Operational Diagnostic Messages

The operating system detected an error while attempting to open the indicated
file. The file remains unopened and the job is terminated. Validate the existence
and characteristics of the actual file. Make sure that the characteristics of the file
match those parameters specified on the FILE statement.

A002 INVALID BLOCK SIZE - filename

The FILE statement for the indicated file specified an incorrect value for the
blocksize. Any of the following can cause this error:

■ The device assigned to the file cannot support a blocksize as large as that
specified.

■ FULLTRK was specified for a file contained on a device other than disk.

■ The required blocksize value is not specified.

A003 INSUFFICIENT CORE STORAGE AVAILABLE

The partition or region in which CA-Easytrieve Plus is running is too small. If
possible, a supplemental message is provided that defines the necessary storage
type, amount, and the identity of the routine that requested the storage. This
problem can usually be corrected by increasing the partition size or region size.
If the supplemental message is 'EZTVFM', either permit VFM to go to a disk or
increase the VFM core storage.

The size of the tables used in a program can be a potential problem.
CA-Easytrieve Plus will allocate space for each table in the program using the
following formula, and then add them together to determine the total core
storage to be allocated:
LRECL * the number of table entries = The amount of allocated storage

For example, if you specify a table value of 600000, approximately 21 MB of real
core storage will be allocated for the table, regardless of the actual number of
table entries. If the table has 20000 entries, the amount needed is approximately
720,000 bytes. This is considerably smaller than the 21 MB reserved by
CA-Easytrieve Plus.

A004 CATASTROPHIC ERROR IN MODULE - modname

If another Annn message preceded this error message, you should correct the
problem that the preceding message describes and rerun your program. If the
error persists, call Computer Associates Technical Support for assistance.

A005 I/O ERROR - filename

B–2 Reference Guide

Operational Diagnostic Messages

The operating system has detected an input/output error for the indicated file.
For OS/390 and z/OS, the contents of the SYNADAF buffer are appended to the
message to provide additional debugging information.

A006 PROGRAM INTERRUPT - CODE x

A program interrupt, codes 1 through 11 was intercepted. See
 in the “System Facilities” chapter for further information and the

associated debugging techniques on this message.

Abnormal
Termination

A007 TABLE INPUT IS NOT IN SEQUENCE - filename

The indicated external table file is not in ascending sequence by the defined
argument (ARG), or the table has a duplicate key. This message applies to
external tables only.

A008 TOO MANY TABLE ENTRIES - filename

There are more table entries in the indicated external table file than specified on
the related FILE statement. Recompile the program after increasing the value in
the file's TABLE parameter.

A009 REPORT PROCESSING ABORTED DUE TO ERROR

Report processing has aborted due to a program interrupt or sort error. Error
analysis (see Abnormal Termination in the “System Facilities” chapter) or the
sort program provides an error message describing the cause of termination.

A010 INVALID FILE REFERENCE - filename

A fieldname was referenced in a file that had no active record. The file might
have been closed, or might be at end-of-file, or in synchronized file mode with
no active record. The name of the file is specified by filename.

A011 VSAM - type ERROR - FILE filename - CODE nnn(xx)

This message indicates that an uncorrectable VSAM error occurred. The name of
the file is displayed along with the error code, which appears in both decimal
(nnn) and hexadecimal (xx) formats. One of four possible types of VSAM errors
are possible:

1. GENCB indicates an error occurred while building or modifying a VSAM
control block.

Diagnostics B–3

Operational Diagnostic Messages

2. OPEN indicates an error occurred while attempting to open the specified
file.

3. LOGICAL indicates that an illogical I/O request was made (such as a
random keyed access to an ESDS).

4. PHYSICAL indicates that a physical I/O error occurred for the specified file.

These error codes 'nnn(xx)' are described in the IBM VSE/VSAM Messages and
Codes Manual.

A012 INVALID LENGTH - filename

The record length of the specified output file is incorrect. The record length must
be in the range 1 to 32767.

A013 WRONG LENGTH RECORD - filename

The current record length for the specified input file is incorrect. Verify that the
FILE statement parameters correctly describe the actual file.

A014 PREMATURE TERMINATION DUE TO PREVIOUS ERROR(S)

This message indicates that some previously identified error has caused a
termination of execution.

A015 UNEXPECTED DBMS ERROR - filename - FEEDBACK CODE = cc - PARM LIST IS AT - xxxxxx

An unexpected condition has occurred during the path processing of a database.
This is probably a result of incorrect definition of the database to CA-Easytrieve
Plus, or a failure of the database system. You get the feedback code and the
address of the parameter list for the last reference to the database system. The
parameter list is contained in the CA-Easytrieve Plus snap dump or the
operating system dump, whichever is available.

The feedback code 'cc' is described in the appropriate DBMS Programmer's Guide.

A016 LOAD ERROR - program-name

An error was detected while attempting to load program-name.

A017 DBD IS NOT FOUND WITHIN PSB

B–4 Reference Guide

Operational Diagnostic Messages

The DBD specified in the FILE statement cannot be located within the PSB that
was passed through DLI-IMS/DB.

A018 DLI-IMS/DB UPDATE IS NOT ALLOWED - function

The system was installed with the option UPDTDLI=NO and a variable function
request of DLET, ISRT, or REPL was made.

A019 POINT TO ACTIVE SFP FILE IS NOT ALLOWED

A POINT statement cannot be executed for a VSAM file that is being used in a
synchronized file processing job.

A020 VSAM UPDATE IS NOT ALLOWED

The system was installed with the option UPDTVS=NO and an attempt was
made to extend a file by using the CREATE or UPDATE option of the FILE
statement.

A021 SELECTABLE UNIT IS NOT AVAILABLE

The selectable option that you have requested is not available at this time. Please
check with your system programmer to be sure the CA-Easytrieve Plus
installation was complete and that you are pointing to all necessary execution
libraries.

A022 INSUFFICIENT MEMORY FOR VFM SPACE ALLOCATION

There is insufficient memory in the region/partition to allocate the amount of
memory specified by the VFMSPACE parameter.

A023 VFM SPACE ALLOCATION EXCEEDED

The amount of memory specified by the VFMSPACE parameter was not enough
to contain all the virtual file data. Memory is assumed when no JCL for VFM is
found.

A024 ERROR OPENING THE VFM DATASET - rc

An irrecoverable error occurred opening the VFM data set.

Diagnostics B–5

Operational Diagnostic Messages

The supplemental text “rc” is printed only when executing the program under
CMS. It is the return code from the FSOPEN macro. See the CMS Command and
Macro Reference Manual for an explanation of this return code.

A025 UNABLE TO RESTART THE VFM DATASET

The Restart Control Program received a nonzero return code from the “Restart
Initialization” call to VFM. A more detailed message can come from VFM.

A026 RESTART ID IS INVALID - supplemental

The Checkpoint ID specified by the user in the JCL was not accepted by IMS. The
supplemental message gives further details.

Note: If the Checkpoint ID specified was not found by IMS on the restart log
tape, IMS ABENDS with a U0102 return code.

A027 ERROR RESTORING DATA FOR RESTART - supplemental

The Restart Control Program found unreconcilable discrepancies between the
checkpointed data or control blocks and the restarting data or control blocks.
This occurs when the CA-Easytrieve Plus program is illegally modified between
checkpoint and restart. The supplemental message gives details.

A028 ERROR WRITING VFM HEADER BLOCK - rc

An irrecoverable error occurred writing the file descriptor block during the
initialization of the EZTVFM data set.

When the program is executed under OS/390, z/OS, or VSE, an A005 message
should precede this message in the listing.

The supplemental text “rc” is printed only when the program is executed under
CMS. It is the return code from the FSWRITE macro. See the CMS Command and
Macro Reference for an explanation of this return code.

A029 ERROR WRITING A VFM DATA BLOCK - rc

An irrecoverable error occurred during an attempt to write to the EZTVFM data
set.

When the program is executed under OS/390, z/OS, or VSE, and A005 message
should precede this message in the listing.

B–6 Reference Guide

Operational Diagnostic Messages

The supplemental text “rc” is printed only when the program is executed under

Diagnostics B–7

more details.

CMS. It is the return code from the FSWRITE macro. See the CMS Command and
Macro Reference for an explanation of this return code.

A030 ERROR READING A VFM DATA BLOCK - rc

An irrecoverable error occurred during an attempt to read from the EZTVFM
data set.

When the program is executed under OS/390, z/OS, or VSE, an A005 message
should precede this message in the listing. The supplemental text “rc” is printed
only when the program is executed under CMS. It is the return code from the
FSWRITE macro. See the CMS Command and Macro Reference for an explanation
of this return code.

A031 CHECKPOINT-ID EXCEEDS 99,999,999

A maximum of 99,999,999 checkpoints are permitted.

A032 DATA BASE COULD NOT BE REPOSITIONED

The database could not be repositioned. Possible reasons are paths changed or
database segments were added or deleted.

A033 HOSTDISK: TOO MANY FIELDS DEFINED FOR DBASEIII FORMAT -

FILE filename

The number of fields defined for the indicated file exceeds the limit set by
dBaseIII.

A034 HOSTDISK: INVALID QFAM OPTION TABLE - FILE filename

Verify that a valid CA-Corporate Tie Options Table has been specified. See your
CA-Corporate Tie Getting Started for more information.

A035 HOSTDISK: TRANSLATE TABLE NOT FOUND IN QFAM OPTION TABLE - FILE filename

Verify that the translate table was included during the assembly of the
CA-Corporate Tie Options Table. See your CA-Corporate Tie Getting Started for

Operational Diagnostic Messages

A036 HOSTDISK: INVALID PC FILE FORMAT FOR FILE filename

The format specified for the indicated file is incorrect. Valid options are: LOTUS,
dBASEIII, PRN, EZTPC, and BASIC.

A037 HOSTDISK: FIELD DEFINITIONS REQUIRED FOR FILE filename

There must be at least one field defined for the specified filename. Only
PRINTER files do not contain field definitions.

A038 HOSTDISK: filename, QFAM REQUEST function: RETURN CODE: return code

CA-Corporate Tie has detected an input/output error for the specified file. The
I/O request is identified by function. The error code is specified in return code.
Valid functions are: open for input, open for output, read record, write record
and close file. This message is always accompanied by an A039 message that
identifies the CA-Corporate Tie guide to use in problem resolution.

A039 HOSTDISK: SEE CA-CORPORATE TIE PROGRAMMER'S GUIDE, QFAM REQUEST RETURN CODES

This message always accompanies the A038 message and identifies the
CA-Corporate Tie guide to use in problem resolution.

A041 A CA COMMON SERVICES COMPONENT IS MISSING

Make sure that CA Common Services is running and rerun program.

A043 LE ENVIRONMENT RETURNED A NON-ZERO RETURN CODE

Make sure that the LE environment is set up according to CA-Easytrieve Plus
guidelines and that needed modules are available.

A044 INVALID OPTION TABLE PARAMETER

You specified a CA-Easytrieve Plus option that is not valid in your operating
system environment. Verify your options.

A045 SORT TERMINATED DUE TO NON-ZERO RETURN CODE - value

B–8 Reference Guide

SORT did not run successfully. The value parameter indicates the SORT return
code.

Syntax Diagnostic Messages

A046 SQL - supplemental

Diagnostics B–9

for assistance.

An SQL error has occurred. The supplemental message gives detailed
information on the SQL error condition as returned from the SQL interface.

Syntax Diagnostic Messages
The following group of messages describe errors detected while syntax checking
the CA-Easytrieve Plus source program. The optional supplemental messages in
this group specify:

■ Additional diagnostic information

■ Specific object in error

■ Word most likely in error

B001 LITERALS CANNOT EXCEED 254 CHARACTERS

The literal exceeds the maximum length of 254 characters.

B002 INVALID HEXADECIMAL CHARACTER STRING

A hexadecimal character string is constructed incorrectly. (See EBCDIC Format
Hexadecimal Literals and DBCS Format Hexadecimal Literals in the “System
Overview” chapter.)

B003 EXPECTED CONTINUATION NOT RECEIVED

A statement continuation was indicated, but end-of-file on the CA-Easytrieve
Plus source input file has been detected.

B004 REPORT EXCEEDS PAGESIZE

The number of lines required to print a detail record plus any title or heading
exceeds the PAGESIZE value.

B005 INSTALLATION ERROR -- CALL CA-EASYTRIEVE Plus SUPPORT

An installation error has occurred. Call Computer Associates Technical Support

Syntax Diagnostic Messages

B006 MACRO SYSTEM -
{ LIBR } -- additional diagnostic information
{ PAN }
{ PDS }
{ }
{ SSL }
{ USER }
{ VSAM }

An error has occurred within the macro system library interface. The type of
library interface routine is indicated. A supplemental message, supplied by the
indicated macro library interface, describes the particular problem.

B007 VALID IF/END-IF PAIRING - count

An END-IF statement is either missing or incorrectly placed. Every IF statement
must be delimited by an END-IF statement. The value, count, indicates how
many IF statements were not delimited by an END-IF. Look for previous error
messages B173 or B185 indicating that the nesting level was in error.

B008 INVALID LOGICAL UNIT

The SYSxxx number specified is not valid or is not within the range of SYS000
through SYS240.

B009 NO MATCHING 'PROC' STATEMENT

An END-PROC statement was encountered without a valid matching PROC
statement.

B010 INVALID BLOCKSIZE - filename

An inconsistent value for the blocksize is specified on the FILE statement for the
indicated file.

For fixed-length records, the blocksize must be an integral multiple of the record
length.

For variable-length records, the minimum blocksize is the record length plus
four (4).

B011 TABLE INPUT IS NOT IN SEQUENCE

B–10 Reference Guide

The current INSTREAM table file is not in ascending sequence by the argument
(ARG), or the table has a duplicate key.

Syntax Diagnostic Messages

B012 DUPLICATE NAME -

Diagnostics B–11

code of DLET, ISRT, or REPL was specified.

{file-name }
{field-name }
{report-name}

The indicated name is a duplicate. The name can be a filename, fieldname, or
report-name.

B013 ASSIGNMENT OPERATOR MISSING - field

An assignment statement was being processed but an equal sign (=) was not
found in the second position. Field indicates the symbol found where the equal
sign was expected.

B014 UNABLE TO RECOGNIZE STATEMENT - word

The indicated statement is not recognizable as a CA-Easytrieve Plus source or
control statement. The optional supplemental message indicates the invalid
statement. If the supplemental message is not present, the entire jobstream is
unrecognizable and the input is flushed.

B015 SELECTABLE UNIT IS NOT AUTHORIZED

An attempt to use a function of a CA-Easytrieve Plus selectable unit was made;
however, your installation does not have that selectable unit.

B016 INVALID OR CONFLICTING KEYWORD - word

The indicated word is not valid for the associated statement, or it is
inconsistently used.

B017 VSAM UPDATE IS NOT ALLOWED

The system was installed with the option UPDTVS=NO and a WRITE or PUT
statement was issued for a VSAM file, or a PUT statement was issued for a file
other than FILE filename, VS(CREATE).

B018 DLI - IMS/DB UPDATE IS NOT ALLOWED - function

The system was installed with the option UPDTDLI=NO and a literal function

Syntax Diagnostic Messages

B019 ADJUSTMENT NOT ALLOWED OR INVALID - word

For a DEFINE statement, an overlay redefinition for a field is in error. The
redefining field must be contained within the redefined field.

For a TITLE or LINE statement, the space adjustment is invalid. A negative
adjustment cannot cause line item overlay. A positive adjustment cannot extend
beyond the end of the logical line.

B020 PARAMETER MUST BE NUMERIC - word

The indicated word must be numeric.

B021 PARAMETER IS TOO LARGE - word

The value of the indicated word is too large. Refer to the statement description
for the valid range.

B022 IDMS UPDATE IS NOT ALLOWED

The system was installed with the option UPDTIDM=NO and a CA-IDMS
command of MODIFY, STORE, ERASE, CONNECT, or DISCONNECT was
specified.

B023 DECIMAL SPECIFICATION NOT ALLOWED

Decimal places are not permitted in this field.

B024 SINGLE SUBSCRIPT IDENTIFIER IS BOTH A FILE AND A FIELD NAME

The name used as a subscript has been defined as both a fieldname and a
filename. Only a fieldname is valid in this context.

B025 MASK DOES NOT MATCH FIELD -
{ letter }
{ }
{ literal }

The number of digit selectors in the indicated mask does not match the number
of digits in the associated field.

B026 REQUIRED PARAMETER IS NOT CODED - word

B–12 Reference Guide

Syntax Diagnostic Messages

Additional parameters are required. That is, parameters, subparameters, or their
associated values are missing. Refer to the statement syntax description for
correct information.

{ field-name }

B028 VALUE DOES NOT MATCH FIELD TYPE OR SIZE - word

The indicated word is invalid as used in the current statement.

Syntax Rules

B027 NOT A VALID NAME -
{ file-name }

{ report-name }

The indicated name is not valid or is used out of context.

A VALUE clause specified an initial value that does not match the type and/or
size of the associated field.

B029 PARAMETER IS INVALID - word

B030 UNBALANCED PARENTHESES

Parentheses must be balanced across a statement. (See in the
“System Overview” chapter.)

B031 UNBALANCED APOSTROPHES

Apostrophes must be balanced across a statement. (See Syntax Rules in the
“System Overview” chapter.)

B033 INCOMPATIBLE WORK FILE FOR CHECKPOINT

The indicated word cannot be enclosed in parentheses.

B032 LITERAL MUST BE SPECIFIED - word

A literal must be specified for the indicated word.

The file specified on the FILE parameter must be virtual.

B034 CANNOT BE ENCLOSED IN PARENTHESES - word

Diagnostics B–13

Syntax Diagnostic Messages

B035 CANNOT BE ENCLOSED IN APOSTROPHES - word

The indicated word cannot be enclosed in apostrophes.

B036 NUMBER MUST BE POSITIVE INTEGER - word

B037 MUST BE ALPHA LITERAL - word

The indicated word must be an alphanumeric literal.

B038 MUST BE NUMERIC LITERAL - word

The indicated word must be a numeric literal.

B039 QUALIFICATION REQUIRED

The specified name cannot be uniquely identified. Qualify the field or record.

B040 FILE CANNOT HAVE FIELDS - filename

Fields cannot be defined for files with the PRINTER attribute. Fields cannot be
defined immediately following an IDMS FILE statement.

B041 IMPROPER USE OF PARENTHESES - word

Parentheses cannot be specified in the indicated context.

B042 MORE QUALIFICATION REQUIRED

The qualified name cannot be uniquely identified. Provide additional
qualification.

B043 STATEMENT CANNOT HAVE LABEL - statement

A statement label is invalid for the indicated statement.

B044 OPERAND IS MISSING

The indicated word must be a positive integer.

B–14 Reference Guide

Syntax Diagnostic Messages

A required operand is missing for the current statement as it is coded.

B045 CHECKPOINTED USER AREA EXCEEDS MAXIMUM ALLOWED BY IMS - length

IMS enables seven (7) user areas of 32 KB each to be checkpointed. The
combination of USING field areas and internal data that must be checkpointed
exceeds this value. The supplemented message shows the length that was
attempted. You should decrease the number of USING field areas.

B046 CANNOT PERFORM A STATEMENT LABEL

You coded a PERFORM command that referenced a statement label. A
PERFORM command must reference a PROC label. A PROC label must be
immediately followed by another sentence consisting only of the word PROC.

B047 CANNOT GOTO A PROC LABEL

You coded a GOTO command that referenced a PROC label. A GOTO command
must reference a statement label. A statement label cannot be followed by
another sentence consisting only of the word PROC.

B048 FIELDNAME NOT IN FILE - fieldname

The indicated fieldname is not contained in the specified file.

B049 PARAMETER IGNORED - word

The indicated word is not processed by the syntax check. A message is generated
for each parameter skipped during syntax check. Syntax check termination
occurs whenever the syntax of a statement becomes unrecognizable.

B050 DUPLICATE STATEMENT LABEL - label-name

The indicated label is a duplicate of a previous label. A statement label must be
unique within a procedure or the main body of a job. A procedure label must be
unique within a job activity or report subactivity.

B051 NO COMMON FIELDS FOUND

Diagnostics B–15

The MOVE LIKE command did not find any fields with the same names in the
two files.

Syntax Diagnostic Messages

B052 MORE THAN ONE COMMON FIELD - field

An error was detected while processing a MOVE LIKE statement. For a field in
the TO file, more than one field of the same name was found in the FROM file.

B053 FILE SHOULD BE IS OR VS - filename

A READ, WRITE, or POINT statement references an un-keyed file. The file must
be either ISAM or VSAM.

B054 NOT A VALID FILE - filename

An invalid file was specified for the current statement.

B055 INVALID LENGTH, TYPE OR DECIMAL PLACES - word

There is an inconsistency in the current field definition, or the field's type is not
valid in the statement referencing the field. For example: an A-type field cannot
have any decimal places specified, a two-byte packed field can have a maximum
of three decimal places, or a comma was omitted between two host variables,
causing the second to be treated as a null indicator.

B056 UNRESOLVED LABEL REFERENCE - label-name

The indicated label was referenced on a statement, but a corresponding label was
never specified. This is a deferred message generated at the end of each job
activity. The program must be scanned to locate the invalid reference.

B057 INVALID LABEL REFERENCE

The indicated label has a reference that extends outside the allowed scope of
reference for a label.

B058 UNRESOLVED REPORT REFERENCE

A PRINT statement specified a report-name for which a corresponding report
was never specified.

B059 PREMATURE END OF FILE

B–16 Reference Guide

Syntax Diagnostic Messages

An end-of-file was detected (on the source program input file) before

Diagnostics B–17

within a synchronized file group.

CA-Easytrieve Plus could identify a valid program. Verify that the JCL
statements that associate a data set with SYSIN (SYSIPT) are valid. This message
is generated when a null source program is encountered.

B060 MISSING END-PROC STATEMENT

The current procedure was not terminated properly with an END-PROC
statement.

B061 REPORT LINE OVERFLOWED BY - amount

The current report output line overflowed the LINESIZE by the amount
specified. Solutions include:

■ Reduce the width of one or more line items.

■ Reduce the number of fields on the line.

■ Reduce the SPACE value.

■ Increase the LINESIZE value if possible.

For detailed information on the above option, see the Line Item Positioning
section in the “Report Processing” chapter.

B062 FIELD REFERENCED IN UNAVAILABLE FILE - filename

One or more fields were referenced in the identified file, but the file is not used
within the job activity. This is a deferred message that is generated at the end of
each job activity. This message is usually accompanied by one or more B063
messages that identify which fields were referenced in the unavailable file. If the
referenced file is unavailable, this message is usually accompanied by message
B072.

B063 FIELD REFERENCED WAS - fieldname

This message usually accompanies the B062 message and identifies which fields
were referenced in the unavailable file.

B064 NUMBER OF KEYS MUST BE SAME FOR ALL FILES - filename

The same number of corresponding keys must be specified for each file defined

Syntax Diagnostic Messages

B065 JOB OR SORT STATEMENT INVALID AFTER JOB
 - JOB
 - SORT

A JOB or SORT statement immediately follows a JOB statement. There is no job
activity defined for the preceding JOB statement.

B066 INVALID FILENAME, FILENAME SUBSTITUTED - filename

The filename on a FILE statement was not defined properly. A filename was
substituted in order to continue processing the program. Correct the filename
definition on the FILE statement.

B067 CONFLICTING OR DUPLICATE OPTION - option

The specified option either is not permitted, or has been specified more than
once.

B068 PARAMETER INVALID WITH 'ADJUST' - COL

The COL parameter must be used with the REPORT NOADJUST parameter.

B069 INVALID RECORD LENGTH - word

The indicated record length is not valid.

B070 VALUE NOT WITHIN ACCEPTABLE RANGE - word

The indicated value is not within the range required for its usage. Refer to the
description of the current statement for the valid range.

B071 INVALID MACRO SUBSTITUTION WORD - word

The indicated word is not a valid substitution word. Either the format of the
name is incorrect, the name has not been previously defined, or the name is too
long.

B072 EXCESSIVE OR MISPLACED POSITIONAL PARAMETER - word

B–18 Reference Guide

One of the following conditions exists:

Syntax Diagnostic Messages

1. The number of positional parameters specified for the macro invocation
exceeds the number defined in the macro definition.

2. A positional parameter was specified after a keyword parameter on the
macro invocation statement.

3. A keyword parameter was misspelled, which caused it to be interpreted as a
misplaced positional parameter.

B073 NUMERIC VALUE MUST BE INTEGER - word

The indicated word must be an integer.

B074 IMPROPER USE OF AMPERSAND IN MACRO

An ampersand was used incorrectly in a macro definition. One of the following
conditions exists:

1. A substitution word was not preceded by either a CA-Easytrieve Plus
delimiter or the macro variable concatenation character (a period).

2. An attempt was made to define an ampersand within a literal. You must
code two ampersands to define the literal ampersand; this is the same basic
rule that is used for the apostrophe.

B075 UNDEFINED SUBSTITUTION WORD - word

The indicated word is used as a substitution word in the macro body, but is not
defined in the macro prototype.

B076 REMAINDER OF STATEMENT IS IGNORED

A previous syntax error has occurred that makes it impossible to continue the
syntax check of the current statement. The rest of the parameters on the
statement are ignored.

B077 INVALID 'DO' / 'END-DO' PAIRING - count

An END-DO statement is either missing or incorrectly placed. Every DO WHILE
statement must be delimited by an END-DO statement. The value, count,
indicates how many DO WHILE statements were not delimited by an END-DO.
Look for previous error messages B173 or B185 indicating that the nesting level
was in error.

Diagnostics B–19

B078 INVALID 'FILE EXIT USING' PARAMETER - word

Syntax Diagnostic Messages

The indicated word is not valid as a USING parameter. File fields cannot be

B–20 Reference Guide

DB, NODE, SCHEMA, or SUBSCHEMA names.

specified for USING parameters on FILE exits.

B079 'PRESIZE' OVERFLOWED, INCREASE IT

The compiler work file's record length is too small for the current job. The value
used is provided in the parameter listing at the end of the compile output.
Increase that value by 512 using the PARM PRESIZE parameter, and then rerun
the job.

B080 PARENTAGE IS INCORRECT - record-name

The parent of this RECORD cannot be found. Either the parent name on this
RECORD statement is incorrect, or the RECORD statement for the parent is
missing.

B081 INCORRECT QUALIFICATION - name

The specified name is either incorrectly qualified or the qualifier used is invalid.
A colon was used instead of a period in an SQL INCLUDE.

B082 NAME IS UNDEFINED - name

The specified name cannot be found.

B083 CANNOT PERFORM PROC WITHIN SAME PROC

A procedure contained a PERFORM statement that references the procedure
itself. This constitutes a recursive call of the procedure, which is not permitted.

B084 PARAMETER INVALID FOR IDMS - word

This parameter is invalid on an IDMS statement.

B085 NAME TOO LONG

The length of a name exceeded: 40 characters for field names, eight (8) characters
for OS/390 and z/OS filenames, seven (7) characters for VSE filenames, 16
characters for IDMS record names, eight (8) characters for IDMS PROGRAM,

Syntax Diagnostic Messages

B086 INVALID LENGTH - name

The length of this field is not valid. When this message is received just prior to a
JOB statement or following a SORT statement, you used RESET and OCCURS to
define an array greater than 65,520 bytes for the specified field name. RESET
cannot be used with an array greater than 65,520 bytes in length.

B087 NULL LITERAL INVALID

A literal must have at least one character.

B088 LITERAL NOT FOLLOWED BY DELIMITER

The specified literal was not terminated properly.

B089 INVALID MACRO NAME - name

The specified name on an MSTART statement for an instream macro is invalid.
The name must be no more than eight characters long, and the first character
must be alphabetic.

B090 NAME IS RESERVED - name

The referenced name is a reserved keyword. Your use of the keyword is invalid.

B091 INVALID TABLE FILE

Either the table is not in ascending sequence, or there is a duplicate ARG.

B092 WORKAREA NOT VALID FOR THIS FILE

Workarea is not supported for this filetype.

B093 FILE ORGANIZATION REQUIRES DISK DEVICE

A disk is required for the type of file.

B094 INVALID RECORD FORMAT

Diagnostics B–21

Either the record format is not valid, or is inconsistent with the blocksize
specified.

Syntax Diagnostic Messages

B095 NOT SUPPORTED IN DOS

The requested option is not supported in the VSE (DOS) environment.

B096 LITERAL TOO LONG

Literals are limited to 254 characters.

B097 LENGTH INVALID FOR TYPE

The length attribute is invalid for the type of field requested.

B098 NOT A VALID TYPE

The type attribute is not valid.

B099 DECIMAL SPECIFICATION TOO LARGE

The number of decimal places cannot exceed the length of the field.

B100 LOCATION INVALID

You attempted to qualify a field, used in a definition, with an invalid file. Work
qualified fields cannot have an offset. File qualified fields cannot be defined in
working storage.

B101 IMPROPER FIELD OVERLAY

The overlay field cannot be longer than or extend past the overlaid field.

B102 TOO MANY MASKS DEFINED

Only 192 unidentified masks can be defined in any one run.

B103 OVERLAY CONFLICTS WITH QUALIFICATION

You attempted to overlay a qualified field onto a field from another file.

B–22 Reference Guide

B104 INDEX FIELD REQUIRED - name

Syntax Diagnostic Messages

The specified name in the INDEX parameter of a DEFINE statement has been
previously defined as a working storage field. Only names not previously
defined, or previously defined as index names, are used in the INDEX
parameter.

B105 VALUE NOT ALLOWED FOR THIS FIELD

The VALUE keyword is not permitted for this field.

B106 NAME INVALID FOR TABLE FILE

The only valid names for a TABLE file are ARG and DESC.

B107 NUMBER MUST BE NON-NEGATIVE INTEGER

You must use a zero or positive integer in this field.

B108 FILE ORGANIZATIONS INCOMPATIBLE

You cannot copy from a flat file to a database file, or from a record to a database
file.

B109 DEVICE NOT ALLOWED FOR VIRTUAL FILE

You cannot specify a device for a virtual file.

B110 RECORD FORMAT REQUIRED FOR VIRTUAL FILE

The record format is required for a virtual file.

B111 SPECIFIED DEVICE NOT VALID FOR TABLE FILE

The specified device does not support table files.

B112 FILE ORGANIZATION NOT VALID FOR INSTREAM TABLES

A file organization keyword cannot be specified for an instream table file.

Diagnostics B–23

B113 DECIMAL PLACES NOT ALLOWED

Syntax Diagnostic Messages

An integer value is required in this field.

B114 NUMERIC FIELD REQUIRED

You tried to use an alphanumeric literal or a field name where a numeric field is
required.

B115 FIELD IS READ/ONLY

You attempted to update a read only field.

B116 INVALID QUALIFIER

Either the name you attempted to define is syntactically incorrect, or you
attempted to qualify a field name with another field name, or you had too many
qualifiers, or you attempted to qualify a field with a reserved word other than
WORK.

B117 INVALID LENGTH FOR TABLE FIELD

The length for the ARG and/or DESC fields cannot exceed 254.

B118 NAME MISSING

You referenced a null value within parentheses.

B119 INVALID SUBSCRIPT QUALIFIER

The specified subscript was not valid, or a literal was used where literals are not
permitted.

B120 SUBSCRIPT INVALID ON A SUBSCRIPTED FIELD

You cannot subscript a field with a subscripted field.

B121 NAME EXPECTED AFTER A QUALIFIER

Qualification was started and not completed.

B–24 Reference Guide

B122 NAME MUST BE A FILE OR FIELD - name

Syntax Diagnostic Messages

The name entered is not a field or a file.

B123 NAME NOT DEFINED IN FILE OR RECORD

The specified name cannot be found within a file or a record.

B124 NAME CANNOT BE QUALIFIED

You attempted to qualify a name that cannot be qualified. Verify that you are
referencing the correct CA-Easytrieve Plus variable.

B125 SUBSCRIPTS NOT ALLOWED

You incorrectly specified a subscript where subscripted fields are not permitted.

B126 TOO MANY SUBSCRIPTS

Only three subscripts are permitted.

B127 NOT A REPORT PROCEDURE NAME

While in a REPORT section, you attempted to PERFORM a procedure that is not
a valid REPORT procedure. See the “Report Processing” chapter for a list of
valid report procedures.

B128 INCORRECT NUMBER OF SUBSCRIPTS

You attempted to reference a subscripted field. The number of subscripts is
dependent on how you defined the field in the library section. Seethe “Table and
Array Processing” chapter for more details.

B129 INDEXED FIELD NOT ALLOWED

While using a variable as a subscript identifier, you referenced an indexed field.
Indexed fields are not permitted to be referenced on certain statements, such as
the USING parameter of a SORT statement.

B130 SORT FIELD CANNOT EXCEED 255 BYTES

Diagnostics B–25

The maximum length of a sort field is 255 bytes. Use more than one adjacent
field when it is necessary to sort on long fields.

Syntax Diagnostic Messages

B131 EXIT NOT ALLOWED FOR INSTREAM TABLES

A file exit is not permitted on an instream table file.

B132 APOSTROPHE NOT PRECEDED BY SPACE

Apostrophes must be preceded by a space or a left parenthesis.

B133 COMMA NOT FOLLOWED BY SPACE

A comma must be followed by a space.

B134 ALL OTHER PARAMETERS IGNORED FOR DATABASE

Only the DL/I or IDMS keywords (and their associated sub-keywords) are valid
for database file definitions.

B135 REPORT FILE LENGTH EXCEEDED

The length of a report work file record has exceeded the record length specified
on the FILE statement, or if VFM is being used to spool the report, the report
work file record length has exceeded 65535.

B136 SUM FILE LENGTH EXCEEDED

The length of the sumfile record has exceeded the record length specified on the
FILE statement for the SUMFILE, or if VFM is being used for the sumfile, the
sumfile record length has exceeded 65535.

B137 LITERAL CONTAINS DBCS DATA FROM MULTIPLE DBCS CODE SYSTEMS-word

The identified word contains the shift codes of more than one DBCS code
system. You cannot mix DBCS code systems in the one literal.

B138 DBCS HEX LITERAL MUST DEFINE AN EVEN NUMBER OF BYTES

A DBCS hexadecimal literal must contain an even number of bytes. This means
that it must be defined using a multiple of four hexadecimal characters.

B–26 Reference Guide

B139 RELATIONAL OPERATOR MUST BE EQ OR NE

Syntax Diagnostic Messages

Series tests and range tests must use the relational operator EQ or NE.

Diagnostics B–27

ROUTINE

B140 INVALID OR UNSUPPORTED DBCS CODE SYSTEM-word

The specified DBCS code system is not defined for your installation.

B141 EXTENDED REPORTING PRINTER NAME NOT DEFINED-word

The printer name defined for the EXTENDED keyword is not defined in the
extended reporting Options Module.

B142 INVALID FILE DEFINITION FOR EXTENDED REPORTING PRINTER

An extended reporting printer file must be a sequential file. It cannot have a
device type of CARD or PUNCH. It cannot be a TABLE file.

B143 UNSUPPORTED DBCS CODE SYSTEM FOR EXTENDED REPORTING PRINTER

The DBCS code system assigned to an extended reporting printer was not
defined in the DBCS Options Module.

B144 INVALID OR UNSUPPORTED USE OF DBCS DATA-word

The identified field or literal containing Double Byte data is invalid or
unsupported in the context in which it is being used.

B145 INVALID OR UNSUPPORTED CONVERSION LITERAL IDENTIFIER-word

The source conversion identifier has not been defined in the DBCS Options
Module and this cannot be converted.

B146 INVALID LITERAL LENGTH RETURNED BY CONVERSION LITERAL

The length of a source conversion literal returned by the conversion routine is
invalid. It must be between 1 and 254 and have an even length if the literal is all
DBCS characters.

B147 INVALID OR UNSUPPORTED DBCS CODE SYSTEM RETURNED BY SOURCE CONVERSION

Syntax Diagnostic Messages

The DBCS code system returned by a Source Conversion Routine is not defined
in the DBCS Options Module.

B148 CONVERSION ERROR - message

A Source Conversion Routine error was indicated. The message text was
returned by the conversion routine.

B149 MIXED FIELDS NOT VALID FOR DBCS CODE SYSTEM

MIXED fields can only be defined for a DBCS code system that supports either
Wrapping or Header shift codes.

B150 SORT NOT DEFINED FOR DBCS CODE SYSTEM

The DBCS sort options are only supported for IBM and JEF DBCS code systems
and only if a KANJI sort has been defined in the DBCS Options Module.

B151 INVALID FONT INDEX VALUE

A font index value must have a value of 1 through 256.

B152 DBCS CODE SYSTEM OF SORT-IN AND SORT-OUT NOT EQUAL

For KANJI sort, the DBCS code system of the sort input file must match the
DBCS code system of the sort output file.

B153 ITEM DOES NOT MATCH DATA TYPE OF FONT - word

The data format of the print item does not match the data format of the font to be
used to print the item.

B154 MAXIMUM OVERPRINT RECORDS EXCEEDED FOR PRINT LINE

A print line generated by the indicated statement requires more overprint
records than is supported by the assigned extended reporting printer.

B155 PRINT ITEM OVERLAPS EXISTING PRINT ITEM - item

B–28 Reference Guide

For extended reporting printers, print items (fields and literals) cannot overlap
or print on top of one another.

Syntax Diagnostic Messages

B156 FONT DEFINED FOR HEADING LITERAL NOT FOUND - word

The font number defined for one of the headings of the item identified as word,
is not defined in the extended reporting Options Module for the assigned
extended reporting printer.

B157 FONT NOT DEFINED - font-number

The font number was not found in the extended reporting Options Module for
the assigned extended reporting printer.

B158 INVALID USE OF DBCS DATA IN HEADING - word

One of the heading lines of the item identified as word contains DBCS data and
the assigned printer does not support DBCS data.

B159 POSITION FOR PAGE COUNT OCCUPIED BY PRINT ITEM

When positioning the page count on title line 1, it was detected that a print item
already occupies that position.

B160 OPTION ONLY SUPPORTED FOR EXTENDED REPORTING PRINTER - word

You can only use a font index value when the report or print line is directed to
an extended reporting printer that is not a line printer.

B161 LINESIZE TOO SMALL TO POSITION TAG LITERAL

The value of LINESIZE is too small to position the TAG literal on the first
summary line of the report. Increase the LINESIZE value or decrease SPACE or
the size of the TAG literal.

B162 EXCESSIVE PARAMETERS SPECIFIED ON STATEMENT, REMAINDER IGNORED

The statement requires a fixed number of parameters. This value was exceeded
for the indicated statement.

B163 MAXIMUM RECORD LENGTH EXCEEDED FOR EXTENDED REPORTING PRINTER

Diagnostics B–29

A print record for the indicated statement exceeds the maximum record size
defined for the assigned extended reporting printer.

Syntax Diagnostic Messages

B164 MAXIMUM DATA LENGTH EXCEEDED FOR EXTENDED REPORTING PRINTER

A print record for the indicate statement contains more print data then is
supported by the assigned extended reporting printer.

B165 UNABLE TO POSITION LINE COMPLEX ITEM AT EXACT PRINT POSITION - item-number

The elements on each line of a Line Complex must be positioned at exactly the
same print position. Due to the positioning of other print elements on the same
print record, one of the elements of a line complex could not be positioned at the
same print position. You must vary the fonts and character widths of elements
on the print lines in order to to position these elements correctly.

B166 ITEM EXCEEDS MAXIMUM BYTE COUNT SUPPORTED BY A FONT - item-number

The number of bytes in the identified print item exceeds the data byte count of
the assigned font. Reduce the width of the item.

B167 MAXIMUM PAGE EXCEEDED BY PAGESIZE OR LINESIZE VALUE - word

The indicated word is too large for the maximum form size defined for the
associated extended reporting printer.

B168 SPACE REPLACE CHARACTER NEEDED TO USE ASSOCIATED FONT WITH PRINT ITEM -
item-number

The indicated print item occurring on the specified CA-Easytrieve Plus statement
is positioned on an OVERPRINT record that is not the first OVERPRINT record
and the print item MUST have a space that will print at the associated fonts
width. The requirement for a space that prints at the associated fonts width is
due to the item containing MIXED format data or the item is a field on a detail or
summary line that must print as spaces (due to DTLCTL and SUMCTL options).

B169 RELATIONAL OPERATOR IS MISSING

The IF statement coded is missing the relational operator between the subject
and the object.

B170 EXPRESSION NOT ALLOWED

B–30 Reference Guide

Expressions are not allowed in series or range tests.

Syntax Diagnostic Messages

B171 SUBJECT MUST BE A FIELD OR FILE

The subject of a comparison must be either a field or a file. Literals are not
permitted.

B172 SYNCHRONIZED FILE PROCESSING NOT ACTIVE

You coded a MATCH or DUP statement but did not code a JOB statement
specifying synchronized file processing.

B173 NO MATCHING 'IF' STATEMENT

An END-IF statement was encountered without a valid matching IF statement,
or at the same nesting level as a DO WHILE statement.

B174 MORE THAN ONE 'ELSE' STATEMENT

You coded more than one ELSE statement within a single IF/END-IF construct.

B175 CONDITION IS INCOMPLETE

The IF statement does not contain enough information to construct a valid
comparison.

B176 OBJECT OF CONDITION IS MISSING

The object of a comparison, or a condition test, was not specified.

B177 INVALID FIELD CONDITION

The subject is incompatible with the condition test or the condition test is
undefined.

B178 SECOND OBJECT OF RANGE IS MISSING

A range test was detected, but the second object is missing.

B179 FIRST OBJECT OF RANGE IS MISSING

Diagnostics B–31

A range test was detected, but the first object is missing.

Syntax Diagnostic Messages

B180 ARITHMETIC OPERATOR IS MISSING

Two operands were encountered that were not separated by an arithmetic
operator.

B181 INVALID ARITHMETIC OPERATOR

The arithmetic operator specified is not valid.

B182 HEXADECIMAL LITERAL REQUIRED

When the object of a BIT test is a literal, the literal must be a hexadecimal literal.

B183 'AND' OR 'OR' IS MISSING

Compound comparisons must be joined with an 'AND' or an 'OR'.

B184 SUBJECT OF CONDITION IS MISSING

The subject of a comparison is missing.

B185 NO MATCHING 'DO' STATEMENT

An END-DO statement was encountered without a valid matching DO WHILE
statement, or at the same nesting level as an IF statement.

B186 FILE NAME REQUIRED

The name specified is not a filename.

B187 RECORD NAME REQUIRED

The name specified is not a record name.

B188 FIELD NAME REQUIRED

The name specified is not a field name.

B–32 Reference Guide

B189 PROGRAM NAME REQUIRED

Syntax Diagnostic Messages

The name specified is not a program name.

B190 MASK NAME REQUIRED

The name specified is not a mask name.

B191 STATEMENT OR PROCEDURE NAME REQUIRED

The name specified is not a statement or a procedure name.

B192 CURSOR NAME REQUIRED

The name specified is not a previously defined CURSOR name.

B196 FILE OR RECORD NAME REQUIRED

The name specified is not a file or record name.

B197 FILE, RECORD OR FIELD NAME REQUIRED

The name specified is not a file, record, or field name.

B198 RECORD OR FIELD NAME REQUIRED

The name specified is not a record or field name.

B199 FILE OR FIELD NAME REQUIRED

The name specified is not a file or field name.

B200 FIELD OR TABLE NAME REQUIRED

The name specified is not a field or table name.

B201 LOGICAL RECORD NOT ALLOWED

You specified a logical record name where it is not permitted.

Diagnostics B–33

B202 NAME MUST BE A LOGICAL RECORD

Syntax Diagnostic Messages

You failed to specify a logical record name. You cannot specify a field name or
literal.

B203 FIND STATEMENT NOT VALID WITH LOGICAL RECORD

A logical record name cannot be specified on an IDMS FIND statement.

B204 SQL - supplemental

An SQL error has occurred. The supplemental message gives detailed
information on the reason for the error as returned from the SQL interface.

B205 QUALIFYING RECORD NAME NOT VALID

The record name specified as a qualifier of a field in the WHERE parameter is
not valid.

B206 OPERAND FOLLOWING PREFIX + OR - MISSING

Following a leading + (plus) or - (minus) sign, a field name, numeric literal, or an
expression enclosed in parentheses must be coded. Either the end of the
expression or another operator was found instead.

B207 CLOSING RIGHT PARENTHESIS MISSING

The right parenthesis that closes the nested expression was omitted.

B208 NUMERIC HEXADECIMAL LITERAL MUST HAVE SAME LENGTH AS SUBJECT - literal

When comparing a numeric field to a hexadecimal literal, the length of the literal
must be the same as the length of the numeric field.

B209 OPERAND FOLLOWING + OR - MISSING

Following a + (addition) or - (subtraction) operator, a field name, numeric literal,
or an expression enclosed within parentheses must be coded. Either the end of
the expression or another operator was found instead.

B–34 Reference Guide

B210 OPERAND FOLLOWING * OR / MISSING

Syntax Diagnostic Messages

Following an * (multiplication) or / (division) operator, a field name, numeric

Diagnostics B–35

exceed eight (8) bytes in length.

literal, or an expression enclosed within parentheses must be coded. Either the
end of the expression or another operator was found instead.

B211 ELEMENT DOES NOT EXIST IN DICTIONARY

The specified name is not defined in the IDD.

B212 ELEMENT DOES NOT EXIST IN SUBSCHEMA

The specified name is not defined as part of the subschema that contains the
logical record being accessed.

B213 ELEMENT NOT UNIQUE IN SUBSCHEMA

The subschema definition contains more than one definition of the specified
name.

B214 FIELD USED IN ARITHMETIC EXPRESSION IS NOT NUMERIC

The indicated field was used as an operand in an arithmetic expression. The data
type of the operand is alphanumeric. Operands used in arithmetic expressions
must be numeric.

B215 OPERAND OF A LOGICAL CONNECTIVE IS INVALID

The operands of a logical connective (AND/OR/NOT) must be either a
comparison, a DBA defined name, or a Boolean expression enclosed in
parentheses.

B216 FIELD USED IN MATCHES/CONTAINS TEST IS NOT ALPHANUMERIC

The indicated field was used as an operand in a MATCHES/CONTAINS test.
The data type of the operand is numeric. Operands used in
MATCHES/CONTAINS tests must be alphanumeric.

B217 DIVISOR EXCEEDS MAXIMUM SIZE OF 8 BYTES

The second operand of a division operator (/) in the WHERE parameter cannot

Syntax Diagnostic Messages

B218 INVALID NESTED CONDITION

B–36 Reference Guide

CA-Easytrieve Plus was unable to locate an entry for the subschema name
specified on the FILE statement.

A nested condition in the WHERE parameter is invalid.

B219 INVALID EXPRESSION IN PARENTHESES

An expression enclosed in parentheses is invalid.

B220 LOGICAL RECORD CANNOT HAVE FIELDS - record name

A LOGICAL-RECORD cannot have fields associated with it. All fields that are
defined as part of a LOGICAL-RECORD must follow an ELEMENT-RECORD
statement that follows the LOGICAL-RECORD statement.

B221 ELEMENT RECORD MUST FOLLOW LOGICAL RECORD - record name

An ELEMENT-RECORD statement was coded following a FILE statement
without an intervening LOGICAL-RECORD statement. ELEMENT-RECORD
statements must follow a LOGICAL-RECORD statement or another
ELEMENT-RECORD statement.

B222 DATA BASE FILE NOT SPECIFIED AS INPUT

The file that contains the logical record specified by the SELECT statement must
be specified on the INPUT parameter of the JOB statement.

B223 ELEMENT RECORD NOT PART OF LOGICAL RECORD - record name

The name specified on the ELEMENT-RECORD statement does not match any of
the record names specified for the logical record in the data dictionary.

B224 ELEMENT RECORD ALREADY DEFINED - record name

The specified element record name has already been defined for this logical
record.

B225 SUBSCHEMA NAME NOT FOUND - subschema name

While attempting to locate the entry for a logical record in the data dictionary,

Syntax Diagnostic Messages

B226 RECORD NAME NOT FOUND - record name

The record name specified on a LOGICAL-RECORD statement is not defined as
being part of the subschema specified on the FILE statement.

B227 RECORD NOT VALID FOR THIS FILE ORGANIZATION

A RECORD statement only follows a FILE statement that specifies an IDMS or
DL/I database. A LOGICAL-RECORD or an ELEMENT-RECORD statement can
only follow a FILE statement that specifies an IDMS database.

B228 WHERE PARAMETER SYNTAX ERROR -- REMAINDER OF WHERE PARAMETER IGNORED

A syntax error prevented the WHERE parameter from being fully processed. The
unprocessed portion has been ignored. This message follows the message for the
original syntax error.

B229 VARYING ALLOWED ONLY ON ALPHA, KANJI, OR MIXED FIELDS

You tried to define a varying field with a data format other than A, K, or M. A
varying field cannot be defined as numeric. See the “Data Definition” chapter.

B230 INVALID INDICATOR ARRAY

The indicator array specified as an SQL host variable is not valid. Indicator
arrays must be two-byte binary fields occurring more than one time.

B231 RESET INVALID WITH REDEFINE

The RESET keyword must only be specified on simple definitions. RESET fields
cannot be redefined and cannot be part of a redefinition.

B232 RESET ONLY VALID FOR 'W' WORKING STORAGE

The RESET keyword is only valid on W-type working storage fields.

B233 INVALID USE OF VARCHAR FIELD

A VARYING field is not valid in this context.

Diagnostics B–37

B254 LOCATION REQUIRES A W, S, * OR INTEGER

Syntax Diagnostic Messages

The LOCATION clause specified where the first field must be defined. It must be
W for a W-type working storage field, S for an S-type working storage field, * for
the next available position in the current FILE, or an integer specifying the
position within the current FILE of the first field to be defined.

B255 SQL INCLUDE STATEMENT CANNOT FOLLOW SQL LOGIC STATEMENT

The SQL INCLUDE statement cannot follow any other SQL statement except for
another SQL INCLUDE statement, and the SQL INCLUDE statement must be
coded in the library section.

B256 SQL PROCESSING BYPASSED DUE TO PREVIOUS ERROR

A severe error has occurred while processing a previous SQL statement. The
previous error prevents further SQL processing. Correct the error listed
previously to enable SQL processing to continue.

B257 INVALID USE OF BIND PARAMETER

The BIND parameter is only valid if you have set SQLBIND option in your
Options Table to ANY or blanks (the default).

B258 'WHEN' STATEMENT REQUIRED AFTER 'CASE' STATEMENT

You must follow a 'CASE' statement with a 'WHEN' statement. You can insert
comments and compiler directives between a 'CASE' and 'WHEN' pair, but no
statements are permitted between them.

B259 FIELD LENGTH MAY NOT EXCEED 254 BYTES

You specified a field with a length greater than 254 bytes. The compiler only
accepts fields with a length of 254 or fewer bytes.

 B260 LITERAL LENGTH MUST BE EQUAL TO FIELD LENGTH

You specified a literal whose length was not exactly equal to the length of the
subject field. The compiler requires the lengths to be exactly equal.

B261 SERIES AND RANGES MUST BE UNIQUE

B–38 Reference Guide

Syntax Diagnostic Messages

Within a 'CASE' structure, the series and ranges you specify for 'WHEN'
statements must be unique across all the structure's 'WHEN' statements. A series
value can not be duplicated. A range can not be duplicated. A series value can
not fall within a range. A range can not fall within or overlap another range.

B262 INVALID 'CASE' / 'END-CASE' PAIRING - count

An END-CASE statement is either missing or incorrectly placed. Every CASE
statement must be delimited by an END-CASE statement. The value (count)
indicates how many CASE statements were not delimited by an END-CASE.
Look for previous error messages B173, B185 or B263 indicating that the nesting
level was in error.

B263 NO MATCHING 'CASE' STATEMENT

An END-CASE statement was encountered without a valid matching CASE
statement or an END-CASE statement at the same nesting level as a DO WHILE
or IF statement.

B264 MUST BE A CONTROL FIELD-word

The fieldname specified has not been coded on the CONTROL statement.

B265 EVEN VALID ONLY ON PACKED FIELD

The EVEN subparameter is valid only on packed data fields.

B266 MUST BE A NULLABLE FIELD

The subject of the IF statement must have a null indicator associated with it.

B267 MUST NOT BE A NULLABLE FIELD

The identified field may not have a null indicator associated with it.

B268 COMMAND NOT ALLOWED IN HOST SERVER

The PRINT command is not available in this product.

Diagnostics B–39

B269 INVALID DATA TYPE RETURNED FROM CATALOG INTERFACE

Syntax Diagnostic Messages

The data type returned from the CA-Pan/SQL interface is not recognized.

B270 SQL- supplemental

An SQL warning has been issued. The supplemental message gives detailed
information on the reason the warning was returned from the CA-Pan/SQL
interface. This does not affect RETURN-CODE.

B290 WHEN NOT ALLOWED AFTER OTHERWISE

OTHERWISE is used when no WHEN comparisons are met. Therefore, a WHEN
statement cannot follow an OTHERWISE statement.

B291 MORE THAN ONE 'OTHERWISE' STATEMENT

You coded more than one OTHERWISE statement within a single
CASE/END-CASE construct.

B297 PLANNAME CANNOT BE THE SAME AS LINKNAME

The SQL planname for the STATIC SQL application plan cannot be the same as
the linked program name.

B298 INVALID OPTIONS TABLE

The version of the Options Table does not agree with the version of
CA-Easytrieve Plus that you are running. See the Getting Started for information
on generating the Options Table.

B299 SELECTABLE UNIT IS NOT AVAILABLE

The selectable option that you have requested is not available at this time. Please
check with your system programmer to be sure the installation was complete
and that you are pointing to all necessary execution libraries.

B300 MIX OF IDD AND * EZTPIDD NOT ALLOWED

IDD statements and * EZTPIDD statements are not supported concurrently.
Recode the EZTPIDD statements into IDD statements.

B–40 Reference Guide

B301 IDD IDMS ERROR

Syntax Diagnostic Messages

The IDD statement's access into CA-IDMS has resulted in an unexpected return

Diagnostics B–41

CA-Easytrieve Plus program.

code. Resolve any other error messages and try again. If the messages persist,
contact Computer Associates Technical Support.

B302 RECORD NAME IN SELECT NOT FOUND

The SELECT CLAUSE of an IDD SUBSCHEMA or IDD FILE statement specified
a record name not found in the given dictionary.

B303 UNABLE TO RESOLVE IDD ENTITY

The SUBSCHEMA, FILE, or RECORD requested was found in the dictionary.
However, either the version was incorrect, or the given program name was not
authorized for the entity, not within the given schema, or not registered as being
valid.

B304 IDD ENTITY WAS NOT FOUND

The SUBSCHEMA, FILE, or RECORD specified was not found in the given
dictionary.

B305 NO REQUEST WAS ISSUED FOR IDD

An internal error has occurred in the IDD statement processor. Please contact
Computer Associates Technical Support.

B306 USERID REQUIRED FOR SQL/DS

The userid parameter was not specified on the PARM statement. It is required
for DB2 for VSE programs.

B307 ONLY VALID WITHIN LIBRARY DEFINITION SECTION

The statement issued is only valid in the Library Definition Section of a
CA-Easytrieve Plus program.

B308 ONLY VALID WITHIN ACTIVITY DEFINITION SECTION

The statement issued is only valid in the Activity Definition Section of a

CBLCNVRT Messages

B309 KEYVALUE PARAMETER NOT CONSISTENT WITH RECORD KEY PARAMETER

B–42 Reference Guide

fields greater than thirty-one bytes in length are not supported in CA-Easytrieve
Plus. This field has been converted to an alphanumeric type.

Multiple CALC keys are supported. The syntax supporting multiple CALC keys
on the RECORD statement and the keyvalue clause of the RETRIEVE statement
was changed. While the pre-5.2 release syntax of these two statements is still
supported, mixing of the old and the new syntax is not permitted.

B310 MAXIMUM OCCURS VALUE IS 50

The maximum OCCURS value for the 'TO' parameter of a HOSTDISK file is 50.

B311 MUST BE DEFINED IN 'S' WORKING STORAGE

Only fields that specify a location parameter of 'S' are permitted.

B312 FIELD MUST BE ALPHABETIC

Only fields that specify a type of 'A' are permitted.

B313 OCCURS VALUE MUST MATCH 'TO' FIELD'S OCCURS VALUE

The occurs value of the HOSTDISK file's validate field must match the occurs
value of file’s TO field.

CBLCNVRT Messages
The following list and explanation of operational diagnostic messages is
generated by CBLCNVRT.

CBL777 ABOVE NUMERIC FIELD TOO LONG. CONVERTED

A numeric field greater than thirty-one bytes in length has been detected.
Numeric fields greater than thirty-one bytes in length are not supported in
CA-Easytrieve Plus. This field has been converted to an alphanumeric type.

CBL787 ABOVE PACKED FIELD TOO LONG. CONVERTED.

A packed field greater than thirty-one bytes in length has been detected. Packed

DQSCGEN Messages

DQSCGEN Messages
The following list and explanation of operational diagnostic messages is
generated by DQSCGEN.

CGEN010E COMMAND PROGRAM GENERATION FILE IS EMPTY

This error occurs if the CGENDATA data file was not correctly defined in the
JCL.

CGEN020E PREMATURE END OF COMMAND PROGRAM GENERATION FILE - NO STATIC STATEMENTS
FOUND

This error is due to an invalid GENDATA file.

CGEN024E PREMATURE END OF COMMAND PROGRAM GENERATION FILE - MORE SEGMENTS WERE
INDICATED BUT NONE WERE F0UND

This internal error is due to invalid data in the GENDATA file.

CGEN025E CONTINUATION CODE ERROR - MORE SEGMENTS ARE INDICATED BUT STATEMENT
LENGTH HAS BEEN EXCEEDED

This internal error is due to an invalid record in the GENDATA file.

CGEN026E NO CONTINUATION OF RECORDS BUT STATEMENT LENGTH HAS NOT BEEN REACHED

This internal error is due to an invalid record in the GENDATA file.

CGEN030E INVALID RECORD TYPE CODE - EXPECTING x INSTEAD FOUND y

This error is caused by an empty CGENDATA file due to no SQL statements in
the program.

CGEN040E UNSUPPORTED DATA TYPE CODE OF "x" HAS BEEN ENCOUNTERED

This error occurs if a datatype was passed to DQSCGEN which may be valid for
CA-Easytrieve Plus but is not valid for DB2 for OS/390 and z/OS. Usually, a
datatype of NUMERIC was passed to DQSCGEN.

Diagnostics B–43

CGEN050E INVALID DECIMAL SCALE LENGTH "x" FOR DATA TYPE "y" HAS BEEN ENCOUNTERED

IDD Interface Messages

This error occurs if SCALE is less than zero or is greater than PRECISION.

B–44 Reference Guide

the IDMS dictionary. Verify the spelling and rerun your job.

CGEN051E INVALID DECIMAL PRECISION OF "x"

This error occurs if the decimal precision is less than 1 or greater than 31.

CGEN060E INVALID HOST VARIABLE LIST NUMBER OF ENTRIES

This internal error occurs if the host variable list counter does not match the
number of detail entries.

CGEN070E INVALID USER STATEMENT LENGTH

This internal error occurs if the length is less than zero (0).

IDD Interface Messages
The following list and explanation of operational diagnostic messages is
generated by the CA-Easytrieve Plus IDD interface. Note that these do not have
a message ID.

******* ERROR ON
{BIND }
{READY} AT nn
{FIND }
{USE }

An internal error has occurred. Call Computer Associates Technical Support for
assistance.

******* EXPECTED CONTINUATION NOT RECEIVED

A statement continuation was indicated, but end-of-file on the IDD source input
or a non-IDD statement has been detected.

******* IDD-NAME NOT FOUND OR UNAUTHORIZED

The SUBSCHEMA, FILE, or RECORD name was not found or is unauthorized in

IDD Interface Messages

******* NOT A VALID NAME

The indicated name is not valid or is used out of context.

******* NUMBER MUST BE POSITIVE INTEGER

The indicated word must be a positive integer.

******* PARAMETER IS INVALID

The indicated word is invalid as used in the current statement.

******* PARAMETER IS TOO LARGE

The value of the word is too large. Refer to the statement description for the
valid range.

******* REQUIRED PARAMETER IS NOT CODED

Additional parameters are required. That is, parameters, subparameters, or their
associated values are missing. Refer to the statement syntax description for the
correct information.

******* VERSION PARAMETER IS INVALID

The version parameter specified is invalid. Refer to the statement syntax
description for correct information.

******* UNBALANCED PARENTHESES

Parentheses must be balanced across a statement. (See Syntax Rules in the
“System Overview” chapter.)

Diagnostics B–45

SQL Supplemental Diagnostic Messages

SQL Supplemental Diagnostic Messages
The following messages are supplemental messages to the diagnostic messages
B204, or A046. Some error explanations reference message manuals. You should
refer to the correct manuals for the version of SQL you are running. These
manuals are:

■ SQL/DS Messages and Codes for VSE (SH24-5019),

■ SQL/DS Messages and Codes for VM/SP (SH24-5070),

■ IBM Database 2 Messages and Codes (SC26-4113),

■ ORACLE Error Messages and Codes Manual (3605).

SQL WARNING, CODE IS xxxx

A positive SQL code was returned from a “PREPARE” of the statement. You
should look up the SQLCODE in the SQL message manuals.

xxx CURSORS, MAXIMUM USEABLE CURSORS AT RUNTIME ARE yy

More cursors were defined by the user program than were specified by
installation parameters for the interface. See the “OS/390 and z/OS Installation”
chapter in the Getting Started to increase the number of predefined interface
CURSORs.

SQL ERROR, SQL CODE IS xxxx

A negative SQL code was returned from a “PREPARE” of the statement. You
should look up the SQLCODE in the IBM SQL message manuals.

KEYWORD IS INVALID OR AN UNSUPPORTED COMMAND: xxxxxxxx

The first word of the SQL statement must be an SQL command keyword.

STATEMENT CONTAINS INVALID CHARACTER OR TOKEN: xxxxxxxx

A secondary keyword of a command is not valid. In the case of a cursor name,
the cursor name contains invalid characters.

B–46 Reference Guide

SQL Supplemental Diagnostic Messages

THE OBJECT OF THE DECLARE STATEMENT IS NOT CORRECT

The object of the 'DECLARE CURSOR' must be a SELECT statement or an
INSERT statement (DB2 for VSE only).

ANOTHER KEYWORD WAS EXPECTED

The SQL statement is incomplete; additional keywords were expected but not
found.

CURSOR NAME MUST BE SPECIFIED

A valid cursor name was not found immediately after the SQL command word.

END OF STATEMENT EXPECTED

Extra characters were found beyond the valid SQL statement.

ERROR LIMIT EXCEEDED, PROCESSING OF STATEMENT SUSPENDED

Too many errors were encountered when trying to process the SQL statement.
Further processing of the statement is suspended.

MESSAGE DATA: xxxxxxxx

This is a supplemental message for a previous message that displayed the
SQLCODE. This message shows the information to be inserted in the message
text when the SQLCODE is looked up in the message manual.

KEYWORD IN ERROR : xxxxxxxx

This is a supplemental message for a previous syntax error message. The invalid
keyword or token is displayed.

SQL ERRORS FOUND

An ACCESS MODULE was not created for this program because SQL statement
errors were encountered.

Diagnostics B–47

EMPTY OR INVALID ACCESS MODULE

SQL Supplemental Diagnostic Messages

An ACCESS MODULE was not created because the ACCESS MODULE does not
contain any SQL table processing statements, that is, FETCH, INSERT, DELETE.

CURSOR NAME xxxxxxxx PREVIOUSLY DEFINED

A cursor name is “DECLARED” only once.

“OPEN” COMMAND REQUIRED FOR CURSOR xxxxxxxx

A cursor was referenced in a FETCH, UPDATE, or DELETE without an OPEN
statement having been executed.

“DECLARE” STATEMENT REQUIRED FOR CURSOR xxxxxxxx

The cursor name was used in an SQL statement without having been defined by
an SQL “DECLARE CURSOR” statement.

“DECLARE FOR INSERT” REQUIRED FOR CURSOR xxxxxxxx

The cursor name was found in an SQL “PUT” statement without having been
defined by an SQL 'DECLARE FOR INSERT'.

“DECLARE FOR SELECT” REQUIRED FOR CURSOR xxxxxxxx

The cursor name was found in an SQL “FETCH” statement without having been
defined by an SQL 'DECLARE FOR SELECT'.

CURSOR xxxxxxxx NOT REFERENCED IN AN SQL “FETCH” COMMAND

A cursor has been DECLAREd for “SELECT” but has not been referenced in a
“FETCH” statement, or a cursor has been referenced in an UPDATE or DELETE
“WHERE CURRENT OF CURSOR-NAME”, but has not been referenced in a
“FETCH” statement.

CURSOR xxxxxxxx NOT REFERENCED IN AN SQL “PUT” COMMAND

A cursor has been declared for “INSERT” but has not been referenced in a
“PUT” statement.

B–48 Reference Guide

CONFLICTING USE OF CURSOR xxxxxxxx

SQL Supplemental Diagnostic Messages

A cursor name has been declared for “INSERT” use with a “PUT” statement, yet
the same cursor name is being referenced in either a FETCH, UPDATE, or
DELETE “WHERE CURRENT OF CURSOR-NAME”.

START UP ERROR REPORTED BY INIT

The SQL interface was unable to initialize itself. When attempting to terminate
the interface, resources were unable to be released due to the error in the
initialization.

ERROR WHILE EXECUTING AN INTERNAL SQL STATEMENT. SQL CODE IS xxxx

A severe error has occurred in the SQL interface.

■ For DB2 for OS/390 and z/OS, the error is related to the Call Attach facility.

■ For DB2 for VSE, the installation of the application plan probably was not
successful.

Look up the SQLCODE in the IBM message manuals.

INSUFFICIENT STORAGE TO LOAD xxxxxxxx

Not enough storage was available to load the module.

MODULE “xxxxxxxx” NOT FOUND

The module was not found.

UNABLE TO LOAD MODULE “xxxxxxxx”

An error occurred loading a module. Look for IBM error messages that
accompany this message.

UNABLE TO OBTAIN GLOBAL STORAGE

Storage was not available for the SQL interface to run.

ALL INTERNAL CURSORS HAVE BEEN USED, NO CURSORS REMAINING FOR DECLARE

Diagnostics B–49

SQL Supplemental Diagnostic Messages

During the execution of the user module, more cursors were defined and
concurrently opened than were predefined by the interface during the
installation. User should refer to the installation documentation for information
about increasing the number of predefined cursors for the interface.

CURSOR xxxxxxxx MUST BE DECLARED BEFORE EXECUTING RELATED CURSOR STATEMENTS

A cursor must be defined in an SQL “DECLARE” statement before it can be
referenced in any subsequent SQL statements.

SQL CONNECT ERROR, SQLCODE = xxxx

An explicit “CONNECT” was executed by the interface on behalf of the
programmer in order to preprocess the SQL statements. A non-zero SQL code
was returned. User should verify that the proper authorization exists for the
given userid to access the DB2 for VSE subsystem. Further processing of the user
program is suspended.

SQL CREATE ACCESS MODULE ERROR, SQLCODE = xxxx

An SQL “CREATE PROGRAM” was executed by the interface on behalf of the
programmer in order to create an ACCESS MODULE for the SQL statements. A
non-zero SQL code was returned to the interface. The user should refer the SQL
code to his/her system's programmer. Further processing of the user program is
suspended.

RELEASE LEVEL MISMATCH BETWEEN DB2 AND THE CALL ATTACH FACILITY

The release level of the CALL ATTACH facility and that of the DB2 for OS/390
and z/OS subsystem do not match. The interface is unable to execute in this
environment. Further processing of the user program is suspended.

DB2 SUBSYSTEM “xxxx” IS NOT ACTIVE

The DB2 for OS/390 and z/OS subsystem ID that was specified by the user is
not currently active. The interface is unable to execute in this environment.
Further processing of the user program is suspended.

DB2 SUBSYSTEM “xxxx” DOES NOT EXIST

B–50 Reference Guide

SQL Supplemental Diagnostic Messages

The interface was unable to establish a connection to the DB2 for OS/390 and
z/OS subsystem ID that was specified by the user. The user should correct the
subsystem ID and rerun the job. Further processing of the user program is
suspended.

PLAN NAME “xxxxxxxx” NOT AUTHORIZED

The user has not been GRANTed authorization to execute the plan. Further
processing of the user program is suspended.

DB2 ERROR IN SUBSYSTEM “zzzz”; RETURN CODE xxxx, REASON CODE X'yy'

An unanticipated error has been encountered when attempting to use the DB2
for OS/390 and z/OS 'CALL ATTACH' facility. Contact your system
programmer. Further processing of the user program is suspended.

PLAN “xxxxxxxx” NOT FOUND

The plan name specified does not exist within the DB2 for OS/390 and z/OS
subsystem.

MAXIMUM CONNECTIONS TO DB2 SUBSYSTEM “xxxx” EXCEEDED

The maximum number of concurrent connections has been exceeded. Retry the
job later. Connection limits are specified during DB2 for OS/390 and z/OS
installation for TSO, Batch, and Call Attachment environments.

DB2 DENIED ACCESS TO SUBSYSTEM “xxxx”. DB2 EXECUTING IN RESTRICTED ACCESS MODE

A request to connect to a DB2 for OS/390 and z/OS subsystem has been rejected.
DB2 for OS/390 and z/OS was started in restricted access mode. Only userids
authorized to perform maintenance functions are permitted access.

INTERNAL ERROR xxxx yyyyyyyy

An internal error has occurred within the SQL interface. xxxx is a code defining
the error. yyyyyyyy is text data associated with the error.

STATIC COMMAND PROGRAM xxxxxxxx NOT FOUND

Diagnostics B–51

The program requested an SQL static-only execution but the command program
could not be found. Verify that the secondary steps ran successfully.

SQL Supplemental Diagnostic Messages

TIME STAMPS DO NOT AGREE

B–52 Reference Guide

changed to DYNAMIC to permit the remainder of the program to be compiled.
Verify the presence of the GENDATA DD statement. Look on the console log for
information relating to the OPEN failure.

The CA-Pan/SQL time stamp of the SQL static command program does not
match that of the CA-Easytrieve Plus program. Verify the correct running of the
secondary steps.

xxxxxxxx FOUND INSTEAD OF xxxxxxxx

The SQL command program was found to contain the wrong program. Verify
the correct running of the secondary steps.

-818 RETURNED FOR STATIC COMMAND

DB2 for OS/390 and z/OS detected a time stamp problem between the DBRM in
the application plan and the command program. The GENDATA file created by
the CA-Easytrieve Plus SQL program needs to be reprocessed. Rerun the
DB2BIND proc.

-911 RETURNED FOR COMMAND PROGRAM

DB2 for OS/390 and z/OS detected an authorization problem between the user
and the application plan. The userid executing the application plan was not
granted RUN authority by the userid who created it. Either execute with the
same userid that created the plan, or grant access on the plan to the userid that
needs to execute it.

INSUFFICIENT STORAGE TO LOAD xxxxxxxx

There was not enough storage to load the command program. Increase your
storage size (REGION for OS/390 and z/OS, GETVIS for VSE).

UNABLE TO EXECUTE USING STATIC SQL

The execution mode is STATIC-ONLY. However, the user program cannot be
executed using static SQL at this time. The reason is reported in the next error
message.

EXECUTION MODE CHANGED TO DYNAMIC EXECUTION DUE TO ERROR

The OPEN for the GENDATA DD statement failed. The execution mode is

SQL Supplemental Diagnostic Messages

NUMBER OF HOST VARIABLES EXCEEDS 999

An SQL statement cannot have more than 999 host variables. If necessary,
convert the SQL statement into multiple statements.

DELETE FAILED FOR STATIC COMMAND PROGRAM xxxxxxxx

CA-Pan/SQL was unable to delete the named command program. Check the
console log for DB2 for OS/390 and z/OS error messages.

FETCH MUST BE EXECUTED PRIOR TO UPDATE OR DELETE WHERE CURRENT OF CURSOR

A cursor must be executed in an SQL FETCH statement before it can be
referenced in any subsequent SQL statement.

THE CURSOR MUST BE DECLARED FOR UPDATE IN ORDER TO UPDATE OR DELETE WHERE CURRENT OF

A cursor must be defined in an SQL DECLARE statement before it can be
referenced in any subsequent SQL statement.

OS/390 OPEN ERROR ON GENDATA FILE, OPEN RC=xxxxxxxx

The open on the GENDATA FILE failed for the given reason. Report the error to
your systems programmer.

INSUFFICIENT FILE SPACE FOR FILE=GENDATA

A PUT to the GENDATA file failed due to insufficient space. Increase the disk
space for file GENDATA.

OS/390 CLOSE ERROR ON GENDATA FILE, OPEN RC=xxxxxxxx

The close on the GENDATA FILE failed for the given reason. Report the error to
your systems programmer.

Diagnostics B–53

Appendix

C Keywords

This appendix contains a list of CA-Easytrieve Plus symbols and reserved words.
Reserved words are keywords that make up the CA-Easytrieve Plus language, so
they cannot be used as labels or identifiers.

The reserved words are listed in alphabetical order. Associated with each symbol
is one or more references. The references describe the various ways in which you
can use the symbol. An R in the column after the symbol indicates it is reserved.

Symbol References

Special
Symbol

Reserved

Reference

 . Syntax delimiter (period)
Macro parameter concatenation (period)

 < Conditional expression

 <= Conditional expression

 (Syntax delimiter (left parenthesis)

 : Syntax delimiter (colon)

 + Assignment
Continuation of statements and words
DISPLAY
LINE
TITLE

 & Macro variable prefix

 * Assignment
Comment statement
DEFINE

) Syntax delimiter (right parenthesis)

Keywords C–1

Symbol References

Special
Symbol Reserved Reference

 ¬< Conditional expression
POINT

 ¬> Conditional expression

 ¬= Conditional expression

 - Assignment
Continuation of statements and words
DISPLAY
LINE
TITLE

 ** R Reserved for future use

 / Assignment

 ' Syntax delimiter (single quote)

 % Macro invocation

 > Conditional expression

 >= Conditional expression
POINT

 , Syntax delimiter (comma)

 = Assignment
Conditional expression
POINT

 @ R Reserved for future use

C–2 Reference Guide

Reserved Words

Reserved Words
The following list includes all CA-Easytrieve Plus reserved words.

AFTER-BREAK
AFTER-LINE
AFTER-SCREEN
AIM
AND
ATTR
BEFORE
BEFORE-BREAK
BEFORE-LINE
BEFORE-SCREEN
BUSHU
BY
CALL
CASE
CHECKPOINT
CHKP
CHKP-STATUS
CLEAR
CLOSE
COL
COLOR
COMMIT
CONTROL
COPY
CURSOR
D
DECLARE
DEFAULT
DEFINE
DELETE
DENWA
DISPLAY
DLI
DO
DUPLICATE
E
ELSE
ELSE-IF
END
END-CASE
END-DO
END-IF
END-PROC
ENDPAGE
ENDTABLE
ENTER
EOF
EQ

ERROR
EXIT
EXTERNAL
EZLIB
F1...F36
FETCH
FILE
FILE-STATUS
FILL
FINAL
FIRST
FIRST-DUP
FOR
GE
GET
GO
GOTO
GQ
GR
GT
HEADING
HEX
HIGH-VALUES
IDD
IDMS
IF
IN
INSERT
JOB
JUSTIFY
KANJI-DATE
KANJI-DATE-LONG
KANJI-TIME
KEY
KEY-PRESSED
KOKUGO
KUN
LAST-DUP
LE
LEVEL
LIKE
LINE
LINE-COUNT
LINE-NUMBER
LINK
LIST
LOW-VALUES
LQ
LS

LT
MASK
MATCHED
MEND
MESSAGE
MOVE
MSTART
NE
NEWPAGE
NOMASK
NOPRINT
NOT
NOTE
NOVERIFY
NQ
NULL
OF
OR
OTHERWISE
PA1...PA3
PAGE-COUNT
PAGE-NUMBER
PARM-REGISTER
PATH-ID
PATTERN
PERFORM
POINT
POS
PRIMARY
PRINT
PROC
PROCEDURE
PROGRAM
PUT
READ
RECORD
RECORD-COUNT
RECORD-LENGTH
REFRESH
RELEASE
RENUM
REPEAT
REPORT
REPORT-INPUT
RESHOW
RESTART

RETURN-CODE

SYSIPT

TALLY

TERMINATION

TERM-ROWS

TO

UNTIL

UPPERCASE

RETRIEVE

ROLLBACK
ROW
S
SCREEN
SEARCH
SECONDARY
SELECT
SEQUENCE
SIZE
SKIP
SOKAKU
SORT
SQL
STOP
SUM
SYSDATE
SYSDATE-LONG
SYSIN

SYSLST
SYSPRINT
SYSSNAP
SYSTIME

TERM-COLUMNS

TERM-NAME

TITLE

TRANSFER
TRC
UNIQUE

UPDATE

USER
USERID
VALUE
VERIFY
W
WHEN
WHILE
WORK
WRITE
X
XDM
XRST

Keywords C–3

Appendix

D Options Table

The Options Table (EZTPOPT) provides the basic parameters that control
CA-Easytrieve Plus operation. This appendix lists them in alphabetical order.
Space is provided for you to note the options that were selected at system
installation.

The PARM statement provides the ability to temporarily override some of your
system's standard options. The PARM statement and its parameters alter the
program environment only as long as the program is running. For more
information on customizing your program's environment, see PARM Statement
in the “Environment Definition” chapter.

Selectable Options
ABEXIT=xxxxxx

Indicates the type of processing performed when a program check occurs within
a program. Valid values are NO, NOSNAP, and SNAP. Override is through the
ABEXIT parameter of the PARM statement.

■ NO—indicates that no program checks should be processed.

■ SNAP—indicates that CA-Easytrieve Plus should intercept any program
checks in the range 1 through 11 and produce an Error Analysis Report. See
the “System Facilities” chapter.

■ NOSNAP—performs the same functions as SNAP except that the
CA-Easytrieve Plus storage areas are not dumped.

Default: SNAP

Standard:

Options Table D–1

Selectable Options

ACROSS=nnn

D–2 Reference Guide

statement.

Default: (NO,EZTPAQTT)

Specifies the number of labels to print across the print line when using the
LABELS parameter of the REPORT statement. The valid range is 1 to 127.
Override is through the LABELS parameter of the REPORT statement.

Default: 4

Standard:

ALL31=xxx

Specifies whether storage is allocated above or below 16 MB. The valid values for
xxx are OFF and ON.

■ OFF—The compiler generates an object deck whose attributes are
AMODE=31,RMODE=24.

■ ON—The generated object deck has attributes of AMODE=31,
RMODE=ANY.

At runtime, if ALL31=OFF, dynamic storage is allocated below 16 MB. If
ALL31=ON, it is allocated above 16 MB.

No override is available. See Addressing Mode Considerations for more
information.

Note: The ALL31 option must be set to OFF for CMS. For more information
regarding addressing mode limitations while executing in OS/MVS simulation,
see the IBM z/VM V4R1.0 CMS Application Development Guide for Assembler.

Default: OFF

Standard:

ALTSEQ=(xxx[,modname])

Specifies the use of an alternate collating sequence table for the sort process. For
detailed information on this facility, see the SORT Reference manual for your
installation. This parameter is primarily used where the English alphabet is not
used. The valid values for xxx are YES and NO.

■ YES—indicates you want to use an alternate collating table.

■ NO—indicates the facility is not used.

■ modname—if YES is specified, provide the name of table module.

Override for both parameters is through the SORT parameter of the PARM

Selectable Options

Standard:

BLOCKO=x

(OS/390 and z/OS only) Specifies whether a system-determined blocksize is
used for files that do not have logical record length and blocksize coded. A zero
is passed to the operating system that determines the optimum blocksize. This
feature should be used only if your operating system supports the use of the IBM
system-determined blocksize. Override is through the BLOCKSIZE parameter of
the FILE statement.

■ N—indicates that the system does not determine the blocksize for data sets.
It must be specified through the JCL or FILE statement.

■ D—indicates that the system determines the blocksize for disk and tape data
sets. DSORG does not have to be coded in the JCL with this option.

■ P—indicates that the system determines the blocksize for PRINTER data
sets.

■ A—indicates that the system determines the blocksize for disk, tape and
PRINTER data sets.

Default: N

Standard:

BUFNO=nnn

Specifies the number of I/O buffers for each sequential file. VFM, VSAM, and
VSE sequential disk files assigned to FBA devices do not use this information.
Valid values for VSE are 1 or 2; for OS/390 and z/OS, they are 1 to 255. Override
is by the BUFNO parameter of the FILE statement.

Default: 2

Standard:

CALCDUP=xxx

Specifies whether CALC records with duplicate keys are to be retrieved for the
CA-IDMS RETRIEVE statement. Valid values are YES and NO.

■ YES—indicates that all root records with the same tickler file key are
returned.

■ NO—indicates that only the first of the duplicate records is returned.

Override is through the DUPS/NODUPS keyword of the RETRIEVE statement.

Options Table D–3

Default: NO

Selectable Options

Standard:

CLIST=xxxxxxx

Specifies whether a condensed listing of the executable statements for each JOB
and SORT should be produced. Valid values are CLIST and NOCLIST. Override
is through the DEBUG parameter of the PARM statement.

Default: NOCLIST

Standard:

CMSVFM=xx

(CMS only) Specifies the file mode of the CMS minidisk used for the VFM work
file when operating under VM/CMS. The minidisk must be accessed for
read/write operations. The CMS filename used is yyyVFM yyyVFM xx where
yyy is the value of the WKDSNPF option (the default is EZT). The CMS minidisk
must be blocked at 1024.

xx must be one or two characters that are a valid CMS file mode. If only one
character is specified, a blank is automatically supplied as the second character.
No override is available.

Default: A1

Standard:

COMPNME='xx'

Specifies the value that is centered in the title area of the compiler listing. This
facility enables you to specify the name of your company (50 characters
maximum). Enclose the name in single quotes. No override is available.

Default: COMPUTER ASSOCIATES, INTL. FIELD INSTALLATION

Standard:

COMPSTR=nnnnK

(VSE only) This option indicates the amount of storage made available for
loading user-supplied routines at compilation time. Examples of routines loaded
during compilation include DBCS code system conversion programs and Source
Conversion routines.

A VSE error occurs during program loading if this space is too small. The valid
range for this parameter is 0 to 4096. No override is available.

D–4 Reference Guide

Default: 4 KB

Selectable Options

Standard:

DATE=xxxxxx

Specifies the format of the date placed at the top of the compiler listing and also
stored in the system defined SYSDATE field. Valid values are MMDDYY,
YYMMDD, or DDMMYY where MM refers to the month, DD refers to the day,
YY refers to the year. No override is available.

Note: Also, see the LONGDTE= option which is used to specify the four-digit
year.

Default: MMDDYY

Standard:

DATEADJ=nnnn

This option indicates a base year used to calculate the adjusted system date. The
system date is read and the current century is added to the year value in the
system date. This year value is then reduced by the year coded as the DATEADJ
value, giving a year that is used as the YY portion of the SYSTEM-DATE. For
example, a year value of 1985 is calculated to be year 30 if DATEADJ is set to
1955.

Valid values for this option are 0 to 9999. If the result of the calculation results in
a negative number, then a value of zero is used for the year portion of the system
date. Should the year value exceed 99, then the last two bytes are used for the
year portion of the system date. No override is available.

Default: 0

Standard:

DATEMLC=x

(MVS only) Specifies the leading character of the date placed at the top of the
compiler listing and also stored in the system defined SYSDATE field. Valid
values are B or Z where B will leave a leading blank in SYSDATE and
SYSDATE-LONG edit mask and Z will put a '0' the first byte of the SYSDATE
and SYSDATE-LONG edit mask. No override is available.

Default: B

Standard:

Options Table D–5

Selectable Options

DEVICE=xxxx

(VSE only) Specifies the default device type for CA-Easytrieve Plus user files.
Valid values are 3330, 3340, 3350, 3375, 3380, 3390, FBA, TAPE, and DISK. DISK
indicates that the value of the DISK option is used. Override is through the
DEVICE parameter of the PARM statement or the DISK parameter of the FILE
statement.

Default: DISK

Standard:

DISK=xxxx

(VSE only) Specifies the default type of disk. This value is used when DISK is
specified for the options VFMDEV, DEVICE, or MACDEV. It is also used when
you specify the DISK option on a FILE statement. Valid values are 3330, 3340,
3350, 3375, 3380, 3390, or FBA. For programs executing on DOS AF2 or later, the
disk device type is determined when the file is opened.

Default: 3380

Standard:

DLISQL==xxx

Indicates if the IBM DB2-DL/I batch support is being used to access DB2 for
OS/390 and z/OS and DL/I data from application programs with coordinated
recovery. Valid values are YES and NO. A value of NO results in the DB2 Call
Attach Facility being used by the SQL Interface for CA-Easytrieve Plus. This
option requires the use of SQL COMMIT and ROLLBACK commands to
syncpoint the DB2 for OS/390 and z/OS environment independent of the IMS
environment.

A value of YES means DL/I is coordinating recovery of both DB2 for OS/390
and z/OS and DL/I through a two-phase commit process. A commit point
occurs when a program issues an IMS checkpoint call. Therefore, DB2 COMMIT
and ROLLBACK commands are not valid and their execution results in a
nonzero SQLCODE (-925 and -926).

Note: The user must code the correct JCL, in addition to specifying the
applicable value for this parameter.

Default: NO

Standard:

D–6 Reference Guide

Selectable Options

DLIV=xxx

(VSE only) Specifies whether DL/I is to use V command codes for automatic
input. DL/I must be release 1.6 or later to use command codes in SSAs. Valid
values are YES or NO. No override is available.

Default: YES

Standard:

DMAP=xxxxxx

Specifies whether a data map of the library and report files is generated. Valid
values are DMAP and NODMAP. Override is through the DEBUG parameter of
the PARM statement.

Default: NODMAP

Standard:

DOWN=nnnnn

Specifies the number of lines per label. The valid range is 1 to 32767. Override is
by the LABELS parameter of the REPORT statement.

Default: 6

Standard:

DTLCTL=xxxxx

Specifies the method of printing the value of control fields on detail lines in a
control report. For specific information on the options available, see the DTLCTL
parameter under the REPORT Statement in the “Report Processing” chapter.
Valid values are EVERY, FIRST, or NONE. Override is through the DTLCTL
parameter of the REPORT statement.

Default: FIRST

Standard:

Options Table D–7

Selectable Options

 {NONE }
ENVIRON = { }
 {COBOL}

(OS/390 and z/OS only) Specifies to establish the proper execution environment
prior to calling any COBOL subprograms. The environment is established prior
to each JOB activity that contains a CALL statement and is terminated after the
activity for which it was established. When set in the Options Table, it establishes
the default used for all CA-Easytrieve Plus programs. This default can be
overridden using the ENVIRONMENT parameter of the PARM or JOB
statement. For more information about the ENVIRONMENT parameter, see the
“Subprograms” chapter.

Default: NONE

Standard:

EXITSTR=nnnnK

(VSE only) Indicates the amount of storage made available at execution time for
user-called programs and non-VSAM I/O exits. VSAM I/O exits are loaded into
GETVIS space. A VSE error occurs during program loading if this space is too
small. The valid range for this parameter is 0 to 4096. Override is through the
EXITSTR parameter of the PARM statement.

Default: 8 KB

Standard:

FLDCHK=xxxxxxxx

Indicates whether to validate data references to each field during execution. A
data reference is invalid if a fieldname was referenced in a file that had no active
record. An invalid reference can cause a program check or a reference to invalid
data. Valid values are FLDCHK and NOFLDCHK. Override is through the
DEBUG parameter of the PARM statement.

Default: FLDCHK

Standard:

D–8 Reference Guide

Selectable Options

FLOW=xxxxxx

Indicates whether the FLOW option should be active at execution time. FLOW
traces statement execution. Valid values are FLOW and NOFLOW. This option
or STATE is necessary if the statement number prefix is desired on
execution-time diagnostic messages. Override is through the DEBUG parameter
of the PARM statement.

Default: NOFLOW

Standard:

FLOWSIZ=nnnn

Specifies the number of trace entries available for the FLOW option. Each entry
requires 2 bytes of storage. The valid range is 1 to 4096. Override is through the
DEBUG parameter of the PARM statement.

Default: 100

Standard:

IDDEXIT=xxx

Specifies whether the IDD interface is invoked as a modify SYSIN (SYSIPT) exit.
Valid values are YES and NO. No override is available.

Default: NO

Standard:

IDMSNAM=

For internal use only.

Default:

Standard:

LABLSIZ=nnn

Specifies the number of print positions on a printed label. The valid range is 1 to
the value of LINESIZ. Override is through the LABELS parameter of the
REPORT statement.

Default: 30

Standard:

Options Table D–9

Selectable Options

LINESIZ=nnn

Specifies the maximum length of a report line. This value also defines the length
of the compiler output lines. The valid range is 120 to 204. Override is through
the LINESIZE parameter of the REPORT statement, but the value specified by
LINESIZE cannot be greater than the maximum set here. The override is only
applicable to report output. The specified length does not include the carriage
control character.

Default: 132

Standard:

LIST=(xxxxxx,yyyyyy)

Indicates whether to list PARM and/or FILE statistics for each job. Valid values
are PARM or NOPARM, FILE or NOFILE. Override is through the LIST
parameter of the PARM statement.

Default: (PARM,FILE)

Standard:

LONGDTE=xxx

Specifies whether SYSDATE or SYSDATE-LONG is the default date that appears
on TITLE 01 on REPORTs.

■ YES displays SYSDATE-LONG on reports and the compile listing.

■ NO displays SYSDATE on reports and the compile listing.

Valid values are YES or NO. Override for reports is through LONGDATE or
SHORTDATE on the REPORT statement.

Note: The format of SYSDATE-LONG respects the date format as specified by
the DATE= option.

Default: NO

Standard:

MAC#LIB=n

Specifies the number of CA-Panvalet or CA-Librarian libraries to be searched if
the CA-Panvalet or CA-Librarian macro library support is used. The valid range
for this parameter is 1 to 9. No override is available.

D–10 Reference Guide

This value is used as a suffix to the name specified by MACDDN. Thus, if:
MACDDN = PANDD
MAC#LIB = 2

Selectable Options

In the JCL, possible ddnames are:
PANDD1
PANDD2
 ...

Also, if:
MACDDN = LIBR
MAC#LIB = 2

In the JCL, possible ddnames are:
MASTER1
MASTER2
 ...

Default: 1

Standard:

MACDDN=xxxxxxxx

Indicates the name used by the five standard CA-Easytrieve Plus macro library
facilities to reference the desired macro library. Following is a description of how
each facility uses the option in a Macro Library.

CA-Panvalet or CA-Librarian

Defines the first five characters (usually PANDD) of the ddname used to
reference each CA-Panvalet library, or the first six characters (usually MASTER)
of the CA-Librarian ddname. In VSE, the library is also referenced through the
SYS number. See the MACSYS# parameter for details on accessing alternate VSE
library names.

PDS

(OS/390 and z/OS only) defines the ddname used to reference the Partitioned
Data Set (PDS) to be used as a macro library. This parameter must be a valid
ddname.

SSL

(VSE only) MACDDN is not used for the SSL macro facility. Use a LIBDEF
statement to define the source library to be searched for macro members.

Options Table D–11

Selectable Options

VSAM

D–12 Reference Guide

defined when the product was installed.

Defines the OS/390 or z/OS ddname or VSE filename used to reference the
VSAM macro library. This parameter must be a valid OS/390 and z/OS ddname
or VSE DLBL.

No override is available.

Default: PANDD

Standard:

MACDEV=xxxx

(VSE only) Specifies the device type for the CA-Panvalet or CA-Librarian macro
library. Valid values are 3330, 3340, 3350, 3375, 3380, 3390, FBA, or DISK. If you
specify DISK, the value specified for the DISK option is used. No override is
available.

Default: DISK

Standard:

MACRO=xxxx
 =(xxxx[,modname])

Specifies the type of macro library support. Valid values for xxxx are NO, LIBR,
PAN, PDS, SSL, VSAM, or USER. When the type is PAN, the optional modname
can be specified to identify the interface routine. For type USER, the modname
must be specified to identify the interface routine name. (Clients who plan to use
the CA-Librarian and/or CA-Panvalet subsystems should specify MACRO=PDS
for the type of macro library support.)

When the type is SSL, the optional modname can be specified as the default
macro subtype. The default subtype for CA-Easytrieve Plus SSL members is Z.
The subtype can be specified on the macro invocation statement. No other
override is available.

Default: (PAN,PANMODI)

Standard:

MACSYS#=nnn

(VSE only) Specifies the starting SYS number for CA-Panvalet or CA-Librarian
macro libraries. The valid range is 0 to 240. No override is available. For
CA-Panvalet, a value of 0 indicates that the SYS number to be used is the one

Selectable Options

Default: 0

Standard:

MONEY=

Specifies the one character currency symbol used as the floating currency symbol
in print edit masks. No override is available.

Default: $

Standard:

MTVSERR=xxx

Specifies whether to treat an empty VSAM input file as an error. Valid values are
NO and YES. If NO is specified, an empty VSAM input file is handled as an EOF
condition. If YES is specified, an empty VSAM input file will be handled as an
error, and the run will terminate with a non-zero return code.

Default: NO

Standard:

NEWPAGE=xxx

Indicates whether a skip to channel 1 (top of form) should occur on the first line
of every printed label. Use of this parameter requires a special carriage tape or
FCB. Valid values are YES and NO. A value of NO can be overridden through
the LABELS parameter of the REPORT statement. A value of YES cannot be
overridden.

Default: NO

Standard:

NUMERIC=(xxxxxx,yyyyyy)

Specifies the numeric edit characters for thousands and decimal point
respectively. The x and y can be COMMA or PERIOD. For the European form of
a number, code NUMERIC=(PERIOD,COMMA). No override is available.

Default: (COMMA,PERIOD)

Standard:

Options Table D–13

Selectable Options

 {nn}
NUMWORK={ }
 {DA}

Specifies the number of work areas used by the sort. This option has different
meanings for OS/390, z/OS, and VSE, as indicated below.

■ VSE—enables two types of sort work data sets -- SD and DA. An SD type is a
single extent data set; there can be from one to eight data sets. To specify the
use of SD type data sets, code NUMWORK=n, where n is in the range 1 to 8.
The DA type is a single data set that can have multiple extents. To specify
the use of a DA type data set, code NUMWORK=DA.

■ OS/390 and z/OS—indicate whether the work data sets should be
dynamically allocated by the sort program. If the value of nn is 0, data sets
are not dynamically allocated; they must be defined by DD statements. This
technique is required if your operating system or your sort program does not
support dynamic allocation of data sets. A value of 1 to 31 indicates the sort
program should dynamically allocate the specified number of work data
sets.

Override is through the WORK parameter of the PARM and SORT statements.

Default: 3

Standard:

PAGESIZ=(lllll,ddddd)

lllll, LINE page size, specifies the maximum report page size for LINE
statements. The valid range for LINE page size is 1 to 32767. This value also
defines the page size of the compiler output lines. ddddd, DISPLAY page size,
specifies the maximum report page size for report procedure DISPLAY
statements. The valid range for DISPLAY page size is 0 to 32767. A value of zero
for DISPLAY page size indicates an infinite report page size for report procedure
DISPLAYs. Override is through the PAGESIZE parameter of the REPORT
statement.

Default: 58,0

Standard:

PAGEWRD=xxxxxxxxxx

Specifies the desired spelling for the English word PAGE for non-English
language installations. The specified word replaces the word PAGE in the first

D–14 Reference Guide

The value must be from 1 to 10 characters long. No override is available.

Default: PAGE

title line of each report and at the top of each page of the compiler output listing.

Selectable Options

Standard:

PLACE=xxxxxx

For internal use only.

Default: none

Standard:

PMAP=xxxxxx

Indicates whether a listing of the machine language program is produced. Valid
values are PMAP and NOPMAP. Override is by the DEBUG parameter of the
PARM statement.

Default: NOMAP

Standard:

PRESIZE=nnnnn

Specifies the record length of the compiler work file. The valid range is 512 to
32767. Override is through the PRESIZE parameter of the PARM statement. If
the value is too small for a particular program, error message B079 is issued. This
parameter should be increased only when it becomes unacceptable to override
using the PARM statement. Determine the size required by use of the PARM
statement override.

Default: 512

Standard:

PREPNME=xxxxxxxx

Specifies the default name of the access module to be created for SQL. Override
is through the PREPNAME parameter of the PARM statement.

Default: EASYPLUS

Standard:

Options Table D–15

Selectable Options

REWIND=xxxxxx

(VSE only) Specifies the method used for tape positioning. Valid values are:

■ YES—specifies that the tape is rewound before and after it is used.

■ UNLOAD—specifies that the tape is rewound before use and unloaded after
it is used.

■ NORWD—specifies that the tape should not be positioned before or after
use.

Override is through the TAPE parameter of the FILE statement.

Default: YES

Standard:

SCANCOL=(mm,nn)

Establishes the inclusive column bounds scanned for CA-Easytrieve Plus source
input. The value for mm is the scan start column; the value for nn is the scan stop
column. The valid range for both values is 1 to 80, where mm is less than nn. No
override is available.

Default: (1,72)

Standard:

SEPDATE=x

Specifies the one-character date separator used in the current date for all listings
and reports. The character, represented by the lowercase x, can be any character.
No override is available.

Default: /

Standard:

SEPTIME=x

Specifies the one-character time separator used in the current time for all listings
and reports. The character, represented by the lowercase x, can be any character.
No override is available.

Default: .

Standard:

D–16 Reference Guide

Selectable Options

SINXIT=modname

Specifies the name of a user supplied SYSIN/SYSIPT exit routine. The modname
must be a valid program name. No override is available. More information on
the SYSIN/SYSIPT exit capability can be found in the “Unit Record Exits”
appendix in the Getting Started.

Default: none

Standard:

SKIP=nnn

Specifies the number of blank lines inserted before each LINE 01 is printed,
except for the first LINE 01 after a page heading. The valid range is 0 to 255 or
PAGESIZ, whichever is smaller. Override is through the SKIP parameter of the
REPORT statement.

Default: 0

Standard:

SORTMSG=xxxxxxxx

Specifies the level of messages output from your sort program. Valid values are
NONE, ALL, CRITICAL, and DEFAULT. DEFAULT causes the sort to output the
level of messages that was specified when your sort was installed. Override is
through the SORT parameter of the PARM statement.

Default: DEFAULT

Standard:

SORTMSR=xxxxxxx

Specifies the routing of sort messages. Valid values are PRINTER and
CONSOLE. Override is through the SORT parameter of the PARM statement.
This parameter is ignored if you specify SORTMSG=DEFAULT.

Default: PRINTER

Standard:

Options Table D–17

Selectable Options

SORTNAM=modname

Defines the name of the sort program on your operating system. The modname
must be a valid program name. No override is available.

Default: SORT

Standard:

SORTOPT=(wwww,xxxxxxx,yyyyyy,zzzzzzz)

(VSE only) Specifies the setting of options available for the VSE sort program.
See your installation's sort reference manual for detailed information.

■ wwww—can be TP or NOTP. The TP option requests that the merge order of
the sort be limited to reduce contention for I/O resources. This reduces the
impact on any active TP systems.

■ xxxxxxx—can be REAL or VIRTUAL. VIRTUAL inhibits the sort from fixing
pages. The option VIRTUAL is required when CA-Easytrieve Plus is run in
an ICCF interactive partition. If it is executed in the batch environment,
change the default to REAL for better performance.

■ yyyyyy—can be DIAG or NODIAG. DIAG specifies that messages
containing diagnostic information are produced.

■ zzzzzzz—can be ERASE or NOERASE. ERASE specifies that work data sets
used during a sort are erased at the end of the sort. ERASE is ignored for
work data sets on tape.

All of these options can be overridden through the SORT parameter of the
PARM statement. We recommend that you modify only the xxxxxxx option since
changes to any other options tend to degrade performance. Select these options
through the override on the PARM statement only when necessary.

Default: (NOTP,VIRTUAL,NODIAG,NOERASE)

Standard:

SORTPRT=xxxxxx

(OS/390 and z/OS only) Specifies a valid ddname for sort messages. No
override is available.

Default: SYSOUT

Standard:

D–18 Reference Guide

Selectable Options

SORTRLS=nnnnK

Specifies the amount of free storage to be made available after the sort is
invoked. This space may be required when the input or output file is controlled
by an exit and the exit needs to allocate storage either explicitly or implicitly (for
example, open a file). The valid range is 0 to 1024. Override is through the
PARM statement.

Default: OK

Standard:

SORTSIZ={mmmmK }
 {MAX }
 {MAX-nnnnK}

Specifies the maximum amount of storage that the sort program is allowed to
use. If the value exceeds the amount of storage available, the amount available is
used. Valid values for mmmm and nnnn are 16 to 4096. MAX indicates that the
sort can use all available storage. '-nnnnK' is the amount of storage released after
the MAX amount has been reserved. Override is through the SORT parameter of
the PARM statement.

Default: MAX

Standard:

SORTWK#=(nnn,...)

(VSE only) Specifies the sort work data set logical assignments for SD type work
data sets. You can specify one to eight assignments; nnn can be from 001 to 240,
or 255. A value of 255 indicates that the sort should use the logical unit assigned
during sort program installation. See your sort reference manual for details.
Override is through the SORT parameter of the PARM statement.

Default: (255,255,255,255,255,255,255,255)

Standard:

SORTWRK=xxxxx

(OS/390 and z/OS only) Specifies the sort work device type for sort programs
that dynamically allocate their sort work data sets. The value of xxxxx can be any
particular or generic device name that is valid for your operating system.
Override is through the SORT parameter of the PARM statement.

Default: SYSDA

Options Table D–19

Standard:

Selectable Options

SPACE=nnn

Specifies the number of spaces to be inserted between fields specified on TITLE
and LINE statements. 0 to LINESIZ - 2 is the valid range. Override is through the
SPACE parameter of the REPORT statement.

Default: 3

Standard:

SPREAD=xxx

Indicates whether each line item (column) of a report is separated as far as
possible from adjacent line items. Valid values are YES and NO. Override is
through the SPREAD parameter of the REPORT statement.

Default: NO

Standard:

SPRTXIT=modname

Specifies the name of a user-supplied SYSPRINT/SYSLST exit routine. The
modname must be a valid program name. No override is available. More
information on the SYSPRINT/SYSLST exit capability can be found in the “Unit
Record Exits” in the Getting Started.

Default: none

Standard:

SQLBIND=xxxxxx

Specifies the type of SQL bind processing for the execution of CA-Easytrieve
Plus DB2 for OS/390 and z/OS programs. The default value is blank, which
means that the value for SQLBIND is determined from the BIND parameter of
the PARM statement of the CA-Easytrieve Plus program. Valid values are:

■ DYNAMIC—indicates that SQL statements are to be executed
“dynamically.” The rules of DB2 Dynamic Bind apply to authorization
checking. See the explanation of BIND under the PARM Statement in this
guide. No override is available.

■ STATIC—indicates that SQL statements are to be executed “statically.”
STATIC BIND results in the generation of a “static-command-program” that
is preprocessed by the DB2 for OS/390 and z/OS preprocessor and a DB2
Plan is bound into the DB2 for OS/390 and z/OS system catalog. No
override is available.

D–20 Reference Guide

Selectable Options

■ ANY—indicates that STATIC processing is to be attempted first. If STATIC
processing is not able to take place due to an incomplete static environment,
then processing switches to DYNAMIC. ANY can be overridden by the
PARM statement.

Default: blank

Standard:

SQLSYNTAX=xxxxxxx

Specifies the type of syntax checking to be performed on the SQL statements.
Valid values are:

■ FULL—SQL statements are fully syntax checked using the facilities of the
underlying DBMS. FULL syntax checking results in the SQL statement
undergoing a “dynamic prepare.”

■ PARTIAL—SQL statements are checked for valid keywords, no connection
is made to the DBMS unless an INCLUDE statement is coded for an SQL
table. A value of PARTIAL does not permit the program to execute until it
has undergone FULL syntax checking.

■ NONE—NONE applies to the DB2 SQL Interface. A value of NONE results
in PARTIAL syntax checking being performed. However, it requires an
SQLBIND value of STATIC-ONLY. NONE enables your program to execute
without FULL syntax checking being performed. This option permits your
DB2 for OS/390 and z/OS program to bypass “dynamic prepares” and
authorization checking at compilation.

Default: FULL

Standard:

SSID=

Specifies a valid connection ID for the given database management system. The
valid formats are as follows:

■ DB2 for OS/390 and z/OS—xxxx/yyyyyyyy where xxxx is a valid DB2 for
OS/390 and z/OS subsystem ID and yyyyyyyy is a valid DB2 for OS/390
and z/OS location ID. Neither value is required. Either one can be specified.
If a location ID is specified, it must be preceded by a slash, such as
SSID=/yyyyyyyy.

 If no SSID is specified, the DB2 for OS/390 and z/OS subsystem is obtained
from the DB2 for OS/390 and z/OS default module DSNHDECP found
through the DB2 for OS/390 and z/OS library, specified in your JOBLIB or
STEPLIB JCL.

Options Table D–21

■ DB2 for VSE—yyyyyyyy where yyyyyyyy is a valid database ID.

Selectable Options

Override is through the SSID parameters of the PARM statement.

Default: blank

Standard:

STATE=xxxxxxx

Specifies whether to maintain the statement number of the last statement
executed. This option or FLOW is necessary if the statement number prefix is
desired on execution-time diagnostic messages. Valid values are STATE and
NOSTATE. Override is through the DEBUG parameter of the PARM statement.

Default: STATE

Standard:

STORMAX=nnnnK

Specifies the maximum amount of storage used. The valid range is 60 to 10240.
The amount used is the lower of the STORMAX value or the actual available free
space. No override is available.

Default: 1024 KB for VSE

Standard:

Default: 4096 KB for OS/390 and z/OS

Standard:

SUMCTL=xxxx

Specifies the technique of annotating summary lines in a control report. For
specific information, see the SUMCTL parameter under REPORT Statement in
the “Report Processing” chapter of this guide. Valid values are ALL, HIAR,
TAG, and NONE. Override is through the SUMCTL parameter of the REPORT
statement.

Default: HAIR

Standard:

D–22 Reference Guide

Selectable Options

SUMSPAC=n

Specifies the number of additional print positions to be reserved for printing
summed fields in a report. The additional space is used to prevent an overflow
condition when the summed field exceeds its defined size. The valid range is 0 to
9. Override is through the SUMSPACE parameter of the REPORT statement.

Default: 3

Standard:

SYSTEM=xxxxxx

Specifies the host operating system under which the CA-Easytrieve Plus system
will be running. Valid options are DOSVSE or OS. DOSVSE refers to version AF2
or higher.

Default: DOSVSE for VSE

Standard:

Default: OS for OS/390 and z/OS

Standard:

TALYSIZ=nn

Specifies the size of the TALLY field in digits. The valid range is 1 to 18. The
value of SUMSPAC is added to TALYSIZ to determine the effective size of the
printed field. Using the defaults for SUMSPAC and TALYSIZ, the effective size
of TALLY is five digits. Override is through the TALLYSIZE parameter of the
REPORT statement.

Default: 2

Standard:

Options Table D–23

Selectable Options

TBLMAX=nnnnn

Specifies the maximum number of entries for a table that is loaded from an
external file (not instream). The valid range is 0 to 32767. Override is through the
TABLE parameter of the FILE statement. If the value that you specify for
TBLMAX is excessively high, then the total amount of storage required is
inflated. If the value that you specify for TBLMAX is too low, then a diagnostic
message is issued as the file is loaded. Specify a value that is adequate for 90
percent to 95 percent of the tables, then use the FILE statement override for
particularly large tables.

Default: 256

Standard:

TITLSKP=nnn

Specifies the number of blank lines to be inserted between the last title line and
the first heading line (or the first data line if NOHEADING is specified). The
valid range is 0 to 255 or PAGESIZ, whichever is smaller. Override is through
the TITLESKIP parameter of the REPORT statement.

Default: 3

Standard:

UPDTDLI=xxx

Specifies whether the DL/I update function codes DLET, ISRT, or REPL are to be
allowed on the DL/I statement. Valid options are YES or NO. No override is
available.

Default: NO

Standard:

UPDTIDD=xxx

Specifies whether the dictionary is to be updated with program compilation
statistics. Valid options are YES or NO. When set to YES, override is through the
RETRIEVE parameter on the IDD NAME statement. When set to NO, no
override is available.

Default: NO

Standard:

D–24 Reference Guide

Selectable Options

UPDTIDM=xxx

Specifies whether the CA-IDMS update functions CONNECT, DISCONNECT,
ERASE, MODIFY, READY (for UPDATE), or STORE are permitted on the
CA-IDMS statement. Valid options are YES or NO. No override is available.

Default: NO

Standard:

UPDTVS=xxx

Specifies whether the VSAM update functions are to be permitted. Valid values
are YES or NO. If your site has a security product in place, set this option to YES.
No override is available.

Default: NO

Standard:

USERMSK=(id,'mask',...)

Specifies a list of installation defined edit masks. USERMSK provides the ability
to predefine commonly used edit masks. Each mask is defined as a pair of
values; the first value is the mask identifier, and the second value describes the
mask just as it would be defined in an CA-Easytrieve Plus field definition. Valid
mask identifiers are A through Y. Using letters at the end of the alphabet avoids
conflicts with programmer coded masks. Enclose the mask in single quotes as
follows:
USERMSK=(Y,'999-99-9999',X,'99/99/99')

Default: none

Standard:

VERFILE= {HIGHEST}
 {LOWEST }
 {nnnn }

(IDD only) Specifies the version of the non-database file that you want to
retrieve. Valid values are HIGHEST, LOWEST, and a specific version number
nnnn. Override is through the VERSION parameter of the IDD FILE statement.

Default: HIGHEST

Standard:

Options Table D–25

Selectable Options

VERPGM = {HIGHEST}
 {LOWEST }
 {nnnn }

(IDD only) Specifies the version of the program that is accessing the dictionary.
Valid values are HIGHEST, LOWEST, and a specific version number nnnn.
Override is through the VERSION parameter of the IDD NAME statement.

Default: HIGHEST

Standard:

VERREC= {HIGHEST}
 {LOWEST }
 {nnnn }

(IDD only) Specifies the version of the record that you want to retrieve. Valid
values are HIGHEST, LOWEST, and a specific version number nnnn. Override is
through the VERSION parameter of the IDD RECORD statement.

Default: HIGHEST

Standard:

VERSCHM= {HIGHEST}
 {LOWEST }
 {nnnn }

(IDD only) Specifies the version of the schema owning the subschema that you
want to retrieve. Valid values are HIGHEST, LOWEST, and a specific version
number nnnn. Override is through the VERSION parameter of the IDD
SUBSCHEMA statement.

Default: HIGHEST

Standard:

VFMDEV=xxxxxx

Specifies the device type of the VFM overflow file. Valid values are 3330, 3340,
3350, 3375, 3380, 3390, FBA, DISK, MEMORY, or SAMV. DISK uses the
device-type defined in the DISK parameter. Specify SAMV if the virtual file
manager is on a VSAM managed SAM data space. Override is through the VFM
parameter of the PARM statement. SAMV cannot be specified on the PARM
statement.

D–26 Reference Guide

Selectable Options

When specifying SAMV, define the cluster as follows:
DEFINE CLUSTER -
(NAME(xxxxxx.xxxxxx.xxxx) -
NONINDEXED -
REUSE -
NOALLOCATION -
RECORDFORMAT(V) -
RECORDSIZE(512 4096) -
CYL(n,n) -
VOLUME(volume))
CATALOG(vsam.usercat.file)

Default: DISK

Standard:

VFMSPAC=nnnnK

Specifies the maximum amount of storage used by VFM for its buffer pool. The
valid range is 6 to 4096. Specify a value that is adequate for 90 percent to 95
percent of the programs. Use the following formula:
(number of virtual files + 1) * 8K

Override is through the VFM parameter of the PARM statement.

Default: 64 KB

Standard:

WKDSNPF=xxx

Specifies the three-character prefix used for all internal work files. A user
filename cannot begin with the specified prefix. The value must be three
characters that are valid as a filename prefix. No override is available.

Default: EZT

Standard:

XREF=xxxxxx

Indicates whether a cross-reference listing is produced. Valid entries are LONG,
SHORT, and NOXREF. LONG requests a cross-reference listing that includes
unreferenced names. SHORT requests a listing that contains only referenced
names. NOXREF inhibits production of a cross-reference listing. Override is
through the DEBUG parameter of the PARM statement.

Default: NOXREF

Options Table D–27

Standard:

Appendix

E Examples

This appendix illustrates how to use CA-Easytrieve Plus to solve a variety of
basic data processing problems. The emphasis is placed on reading data files and
printing reports. The examples are excerpts from the Application Guide that
contains additional examples.

The input data for these examples are the Inventory and Personnel sample files
described on the following pages. The field definitions for the files are contained
in the macros listed. The field definitions are not repeated for each example; you
can refer to the original field definitions as required.

The output for each job is typically some form of report. A wide variety of
reports is printed to give you an idea of what you can do. For some examples,
the volume of output has been condensed.

Coding Conventions
The CA-Easytrieve Plus statements in the examples are coded in a standard
format. FILE, JOB, and REPORT statements are coded in column one. All other
statements are indented two columns for each logical level. Vertical spacing is
used between FILE definitions, JOB activities, and REPORT subactivities.

These conventions help make the programs more readable. Your choice of
similar guidelines in the development of your programs permit the logic and
structure of the programs to be easily discerned. A liberal supply of meaningful
comments can also make program maintenance much easier.

Examples E–1

Inventory Sample File

Inventory Sample File
The following macro listing %INVMSTR provides the field definitions for the
Inventory file in the following examples. Refer to this page when studying
examples that use the Inventory file.
MACRO
*
* INVENTORY MASTER FIELD DEFINITIONS
*
 PART-INFO 1 43 A
 PART-DESCRIPTION 1 35 A -
 HEADING('PART DESCRIPTION')
 PART-NUMBER 36 8 N MASK '999-99-999' -
 HEADING('PART' 'NUMBER')
*
 LOCATION-INFO 44 18 A
 LOCATION-CITY 44 7 A HEADING 'CITY'
 LOCATION-STATE 51 2 A HEADING 'STATE'
 LOCATION-CODE 53 3 P HEADING 'CODE'
 LOCATION-BAY 56 1 A HEADING 'BAY'
 LOCATION-BIN 57 3 N HEADING 'BIN'
 LOCATION-LEVEL 60 2 N HEADING 'LEVEL'
*
 ITEM-INFO 62 29 A
 ITEM-SELLING-PRICE 62 4 P 2 -
 HEADING('SELLING' 'PRICE' '(DOLLARS)')
 ITEM-REORDER-POINT 66 4 N 0 -
 HEADING('REORDER' 'POINT')
 ITEM-LAST-SALE-DATE 70 6 N MASK(D 'Z9/99/99') -
 HEADING('LAST SALE' 'DATE')
 ITEM-LAST-INVENTORY-DATE 76 6 N MASK D -
 HEADING('LAST' 'INVENTORY' 'DATE')
 ITEM-LAST-INVENTORY-QUANTITY 82 4 P 0 -
 HEADING('LAST' 'INVENTORY' 'QUANTITY')
 ITEM-MFGD-COMMODITY-GROUP 86 3 P -
 HEADING('MFGD' 'COMMODITY' 'GROUP')
 ITEM-WEIGHT-POUNDS 89 2 P 0 MASK 'ZZ9 #' -
 HEADING('WEIGHT' '(POUNDS)')
*
 LAST-PURCHASE-INFO 91 13 A
 LAST-PURCHASE-QUANTITY 91 3 P 0 -
 HEADING('LAST' 'PURCHASE' 'QUANTITY')
 LAST-PURCHASE-PRICE 94 4 P 2 -
 HEADING('LAST' 'PURCHASE' 'PRICE')
 LAST-PURCHASE-DATE 98 6 N MASK D -
 HEADING('LAST' 'PURCHASE' 'DATE')
*
 VENDOR-INFO 104 17 A
 VENDOR-NUMBER 104 8 N MASK '99-99-9-999' -
 HEADING('VENDOR' 'NUMBER')
 VENDOR-LOCATION-CITY 112 7 A HEADING('VENDOR' 'CITY')
 VENDOR-LOCATION-STATE 119 2 A HEADING('VENDOR' 'STATE')
*
 SHIPPING-INFO 121 6 A
 SHIPPING-FOB-CODE 121 2 P HEADING('FOB' 'CODE')
 SHIPPING-CARRIER-ALPHA-CODE 123 4 A HEADING('CARRIER' 'CODE')
*

E–2 Reference Guide

Personnel Sample File

Personnel Sample File

Examples E–3

50 HEADING DEPT ('DPT/' 'J*C/' 'S*C')
51 HEADING DATE-OF-BIRTH ('DATE OF' 'BIRTH/' 'HIRE')
52 *

The following JOB lists the contents of the Personnel sample file. The field
definitions are embedded as macro %PERSNL. These field definitions are not
repeated in the examples. Refer to this section when studying an example that
uses the Personnel file.
 1 *
 2 * PERSONNEL MASTER FILE LISTING
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
 6 *
 7 * TEST FILE FIELD DEFINITIONS
 8 *
 9 REGION 1 1 N
10 BRANCH 2 2 N
11 SSN 4 5 P MASK '999-99-9999' -
 HEADING('SOCIAL' 'SECURITY' 'NUMBER')
12 EMP# 9 5 N HEADING('EMPLOYEE' 'NUMBER')
13 NAME 17 20 A HEADING 'EMPLOYEE NAME'
14 NAME-LAST NAME 8 A HEADING('LAST' 'NAME')
15 NAME-FIRST NAME +8 12 A HEADING('FIRST' 'NAME')
16 ADDRESS 37 39 A
17 ADDR-STREET 37 20 A HEADING 'STREET'
18 ADDR-CITY 57 12 A HEADING 'CITY'
19 ADDR-STATE 69 2 A HEADING 'STATE'
20 ADDR-ZIP 71 5 N HEADING('ZIP' 'CODE')
21 PAY-NET 90 4 P 2 HEADING('NET' 'PAY')
22 PAY-GROSS 94 4 P 2 HEADING('GROSS' 'PAY')
23 DEPT 98 3 N
24 DATE-OF-BIRTH 103 6 N MASK(Y 'Z9/99/99') -
 HEADING('DATE' 'OF' 'BIRTH')
25 TELEPHONE 117 10 N MASK '(999) 999-9999' -
 HEADING('TELEPHONE' 'NUMBER')
26 SEX 127 1 N HEADING('SEX' 'CODE')
27 * 1 - FEMALE
28 * 2 - MALE
29 MARITAL-STAT 128 1 A HEADING('MARITAL' 'STATUS')
30 * M - MARRIED
31 * S - SINGLE
32 JOB-CATEGORY 132 2 N HEADING('JOB' 'CATEGORY')
33 SALARY-CODE 134 2 N HEADING('SALARY' 'CODE')
34 DATE-OF-HIRE 136 6 N MASK Y -
 HEADING('DATE' 'OF' 'HIRE')
35 *
36 JOB INPUT PERSNL
37 PRINT PERSNL-LIST
38 *
39 *
40 REPORT PERSNL-LIST SKIP 1 SPACE 1 LINESIZE 80
41 *
42 TITLE 'NEW PERSONNEL SAMPLE FILE LISTING'
43 *
44 HEADING REGION ('R' 'G' 'N')
45 HEADING BRANCH ('BRCH')
46 HEADING EMP# ('EMPL' 'NUMBER')
47 HEADING SSN ('SOCIAL SECURITY' 'NUMBER/' 'TELEPHONE')
48 HEADING PAY-GROSS ('PAY - ' 'GROSS/' 'NET')
49 HEADING SEX ('SEX/' 'M/S')

Personnel Sample File

53 LINE 1 REGION -
 BRANCH -

E–4 Reference Guide

 1 04 554-70-3189 11357 LARSON RODNEY 283.92 911 2/11/39 2
 (212) 451-7382 610 H ST SW 215.47 25 8/20/66 S
 NEW YORK NY 10059 03

 SSN -
 EMP# -
 NAME -
 +2 PAY-GROSS -
 DEPT -
 DATE-OF-BIRTH -
 SEX
54 LINE 2 POS 3 -1 TELEPHONE -
 POS 5 ADDR-STREET -
 POS 6 PAY-NET -
 POS 7 +1 JOB-CATEGORY -
 POS 8 DATE-OF-HIRE -
 POS 9 +1 MARITAL-STAT
55 LINE 3 POS 5 ADDR-CITY -
 -1 ADDR-STATE -
 ADDR-ZIP -
 POS 7 +1 SALARY-CODE

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 1

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 1 01 025-30-5228 12267 WIMN GLORIA 373.60 903 5/22/30 1
 (617) 332-2762 430 M ST SW 107 251.65 10 7/12/51 S
 BOSTON MA 02005 01

 1 02 121-16-6413 11473 BERG NANCY 759.20 943 8/15/31 1
 (301) 636-8995 3710 JENIFER ST N W 547.88 25 6/17/55 M
 BALTIMORE MD 21055 03

 1 03 228-58-8307 02688 CORNING GEORGE 146.16 915 10/12/52 2
 (609) 444-7688 3208 S 5TH 103.43 40 11/08/70 S
 TRENTON NJ 08535 06

 1 02 256-52-8737 00370 NAGLE MARY 554.40 935 1/13/43 1
 (301) 636-8995 826 D STREET SE 340.59 10 3/18/73 S
 BALTIMORE MD 21034 01

 1 04 281-36-2873 01963 ARNOLD LINDA 445.50 911 8/29/42 1
 (212) 451-4040 1569 COLONIAL TERR 356.87 10 10/19/68 S
 NEW YORK NY 10012 01

 1 03 298-34-4755 11602 MANHART VIRGINIA 344.80 914 10/13/38 1
 (609) 444-3094 1305 POTOMAC ST N W 250.89 60 7/06/65 S
 TRENTON NJ 08521 08

 1 04 322-30-0050 11931 TALL ELAINE 492.26 917 12/25/40 1
 (212) 451-4531 1412 36TH ST NW 355.19 40 10/16/62 S
 NEW YORK NY 10091 06

 1 01 452-52-1419 02200 BRANDOW LYDIA 804.64 918 9/14/47 1
 (617) 332-6701 3616 B ST S E 554.31 10 7/11/72 S
 BOSTON MA 02011 01

Personnel Sample File

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 2

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 1 04 577-20-0461 11467 BYER JULIE 396.68 932 4/17/39 1
 (212) 773-0799 3400 NORTH 18TH STR 259.80 10 8/25/69 M
 NEW YORK NY 10071 01

 2 01 579-12-0813 11376 HUSS PATTI 360.80 921 3/13/42 1
 (813) 796-1189 1355 TEWKESBURY PLA 223.71 10 4/01/60 M
 CLEARWATER FL 33512 01

 2 02 579-50-4818 11710 POWELL CAROL 243.20 911 11/10/37 1
 (404) 832-8081 5023 AMES STREET N 167.96 10 6/07/55 S
 ATLANTA GA 30316 03

 2 03 008-28-7725 04234 MCMAHON BARBARA 386.40 943 6/09/42 1
 (202) 715-0404 1318 24TH STREET S 283.19 25 8/21/62 M
 WASHINGTON DC 20015 03

 2 03 120-32-5734 03416 FORREST BILL 13.80 931 12/08/45 2
 (202) 715-0389 1545 18TH ST NW 13.19 23 7/17/63 M
 WASHINGTON DC 20018 01

 2 04 190-32-2101 00445 POST JEAN 292.00 911 2/15/45 1
 (904) 986-0034 1250 4TH ST SW 206.60 10 5/11/69 S
 JACKSONVILLEFL 32052 06

 2 03 212-48-5461 00577 PETRIK KATHY 220.80 921 3/17/41 1
 (202) 715-1914 5005 BENTON AVE 154.70 10 6/29/60 S
 WASHINGTON DC 20032 08

Examples E–5

Personnel Sample File

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 3

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 2 05 235-72-1049 01895 VETTER DENISE 279.36 914 7/25/37 1
 (919) 489-1614 7311 KEYSTONE LANE 189.06 40 9/15/50 M
 RALEIGH NC 27591 06

 2 02 284-36-5652 03571 KRUSE MAX 242.40 911 1/01/42 2
 (404) 832-1776 2161 N PIERCE STREE 182.09 10 6/17/60 M
 ATLANTA GA 30345 01

 2 05 310-44-5370 04225 LOYAL NED 295.20 912 5/06/19 2
 (919) 489-5531 17 KENNEDY STREET 230.50 60 8/18/53 M
 RALEIGH NC 27516 08

 2 03 362-48-0393 02765 DENNING RALPH 135.85 919 11/12/49 2
 (202) 715-1832 1629 16TH ST NW APT 109.60 25 4/19/66 S
 WASHINGTON DC 20005 03

 3 01 570-10-5594 04132 WEST KATHY 736.00 940 4/04/33 1
 (816) 581-1352 1728 IRVING ST N W 429.62 60 6/27/64 S
 KANSAS CITY KS 66015 08

 3 02 577-09-1160 01743 THOMPSON JANICE 250.40 923 6/23/32 1
 (214) 941-1441 7752 EMERSON RD 187.40 10 5/23/70 S
 DALLAS TX 75235 01

 3 02 578-38-7587 01730 SMOTH CINDY 315.20 911 5/21/38 1
 (214) 941-1585 4120 18TH STREET NE 202.43 25 9/20/55 M
 DALLAS TX 75219 03

 3 03 578-54-3178 03936 NORIDGE DEBBIE 324.00 944 3/02/36 1
 (312) 646-0934 4264 E CAPITOL NE 242.25 30 8/19/68 S
 CHICAGO IL 60652 05

E–6 Reference Guide

Personnel Sample File

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 4

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 3 03 579-50-4170 01549 ROGERS PAT 329.00 924 4/19/41 1
 (312) 646-1650 1625 FRANKLIN ST N 230.17 30 10/10/61 M
 CHICAGO IL 60691 05

 3 04 208-28-2315 12829 GREEN BRENDA 365.60 911 7/21/28 1
 (612) 588-1900 2671 DOUGLAS PL S E 238.04 20 4/17/69 M
 MINNEAPOLIS MN 55319 02

 3 01 231-68-9995 12403 KELLY KEITH 197.60 940 9/11/34 2
 (816) 581-0031 211 E GLEBE RD #C 145.51 60 5/07/70 S
 KANSAS CITY KS 66021 08

 3 02 418-46-1872 12641 ISAAC RUTH 313.60 911 6/28/29 1
 (214) 941-0558 2639 15TH ST NW 305 219.91 10 9/15/65 S
 DALLAS TX 75213 01

 3 03 467-56-4149 03890 STRIDE ANN 386.40 911 2/29/39 1
 (312) 646-1891 325 C STREET SE APT 272.53 10 9/08/68 S
 CHICAGO IL 60619 01

 3 04 477-44-4948 12318 MALLOW TERRY 282.40 942 9/11/39 2
 (612) 588-8991 2515 K STREET NW AP 195.13 10 7/08/59 S
 MINNEAPOLIS MN 55329 01

 3 02 215-36-5852 09609 LACH LORRIE 310.40 923 7/19/41 1
 (214) 986-1901 3419 LORRING DRIVE 215.91 25 7/19/66 S
 DALLAS TX 75218 03

 3 03 228-46-5157 07781 EPERT LINDA 310.40 918 4/13/44 1
 (312) 588-5118 1440 ROCK CREEK FOR 224.36 10 12/15/70 S
 CHICAGO IL 60609 01

Examples E–7

Personnel Sample File

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 5

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 3 03 269-24-7428 09481 OSMON SAMUEL 628.00 935 6/13/42 2
 (312) 588-8995 4201 CATHEDRAL AVE 411.05 20 7/22/50 M
 CHICAGO IL 60618 02

 3 02 388-18-6119 07231 GRECO LESLIE 1,004.00 914 3/19/45 1
 (214) 399-7688 2195 CANTERBURY WAY 685.23 60 6/28/63 S
 DALLAS TX 75227 08

 3 04 577-16-2985 08262 CROCI JUDY 376.00 914 5/22/43 1
 (553) 444-1970 1606 C ST NE 215.95 60 9/23/64 S
 MINNEAPOLIS MN 55339 08

 3 02 061-30-8680 05805 REYNOLDS WILLIAM 174.15 911 11/03/31 2
 (214) 399-4040 4126 CROSSWICK TURN 134.03 10 6/09/61 S
 DALLAS TX 75244 01

 3 01 090-22-9192 05807 PHILPS SUE 253.26 940 12/09/48 1
 (816) 836-3094 2954 NORTHAMPTON ST 213.76 40 8/10/73 S
 KANSAS CITY KS 66031 06

 3 01 118-34-8805 04589 YOUNG JANE 313.60 911 7/08/43 1
 (816) 836-4531 1545 18 STREET NW 229.69 10 11/20/70 M
 KANSAS CITY KS 66054 01

 3 03 140-32-0779 05914 MILLER JOAN 313.60 920 1/27/47 1
 (312) 588-6701 3 POOKS HILL RD APT 222.61 10 10/02/74 M
 CHICAGO IL 60643 01

 4 01 216-44-7756 05525 TALUS RUTH 460.80 944 10/06/33 1
 (206) 225-3828 9331 CAROLINE AVENU 279.56 25 6/23/66 S
 SEATTLE WA 98003 03

E–8 Reference Guide

Personnel Sample File

MM/DD/YY NEW PERSONNEL SAMPLE FILE LISTING PAGE 6

 R SOCIAL SECURITY PAY - DPT/ DATE OF
 G NUMBER/ EMPL GROSS/ J*C/ BIRTH/ SEX/
 N BRCH TELEPHONE NUMBER EMPLOYEE NAME NET S*C HIRE M/S

 4 02 484-30-8293 06239 JOHNSON LISA 712.80 942 2/05/46 1
 (714) 771-0799 806 CONNECTICUT AVE 451.92 10 4/21/64 S
 SAN DIEGO CA 92045 01

 4 01 577-58-0363 05482 WARD MARINA 183.75 921 9/12/23 1
 (206) 225-9127 1725 H ST NE APT 2 141.47 10 5/28/69 M
 SEATTLE WA 98015 01

 4 03 579-62-1768 04935 ZOLTAN JANET 125.00 924 8/18/28 1
 (213) 493-5966 2026 FORT DAVIS ST 25.00 40 9/14/68 S
 LOS ANGELES CA 90091 06

 4 03 060-26-8978 10949 JONES ALFRED 804.80 940 11/13/39 2
 (213) 493-0979 2070 BELMONT ROAD N 560.63 40 1/15/59 S
 LOS ANGELES CA 90052 06

 4 02 104-20-0956 09764 HAFER ARTHUR 121.95 911 8/03/40 2
 (714) 771-9876 806 CONNECTICUT AVE 96.64 60 10/07/70 M
 SAN DIEGO CA 92031 08

 4 04 448-24-6593 10260 JUDAR PAULA 591.20 943 10/12/50 1
 (415) 278-1753 4333 46TH ST N W 459.57 25 5/06/65 M
 SAN FRANCISCCA 94041 03

 4 03 537-03-4039 11211 WALTERS KAREN 424.00 901 1/10/42 1
 (213) 725-6495 1022 5 KENSINGTON P 282.45 10 3/17/71 M
 LOS ANGELES CA 90030 01

 4 01 558-44-7609 10961 RYAN PAMELA 399.20 914 12/12/49 1
 (206) 225-8456 1717 R N W #301 291.70 10 8/08/70 S
 SEATTLE WA 98009 01

Examples E–9

GETDATE Macro

GETDATE Macro
The following macro, %GETDATE, obtains the system date and strips out the
slashes. The macro is defined with a single positional parameter -- the receiving
field. All other required fields are defined within the macro.
MACRO USER-DATE
*
* GET THE CURRENT DATE AND PUT INTO USER FIELD LESS SLASHES
*
 DEFINE GETDATE-DATE W 8 A
 DEFINE GETDATE-FIRST6 GETDATE-DATE 6 N
 DEFINE GETDATE-LAST5 GETDATE-DATE +3 5 A
 DEFINE GETDATE-LAST6 GETDATE-DATE +2 6 A
 DEFINE GETDATE-LAST3 GETDATE-DATE +5 3 A
 DEFINE GETDATE-LAST2 GETDATE-DATE +6 2 A
 GETDATE-DATE = SYSDATE . * MOVE ALL 8
 GETDATE-LAST3 = GETDATE-LAST2 . * SHIFT LEFT OVER NEXT /
 GETDATE-LAST6 = GETDATE-LAST5 . * SHIFT LEFT OVER FIRST /
 &USER-DATE = GETDATE-FIRST6 . * MOVE TO USER FIELD

E–10 Reference Guide

Basic Examples

Basic Examples

Example 1: Employees in Region 1

The Personnel Department requested a list of all employees in Region 1. The list
must include the employees' first and last names, their employee numbers, and
the branches in which they work. The list and columns must be titled, and must
be in readable format.

This is a simple job since the report formatting is done automatically. The
Personnel file is read via automatic I/O. All records with a region code of 1 are
selected for the report, which is defined simply with a TITLE statement and a
LINE statement.
 1 *
 2 * EXAMPLE 1
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
 35 *
 36 *
 37 JOB
 38 IF REGION = 1
 39 PRINT
 40 END-IF
 41 *
 42 REPORT LINESIZE 70
 43 TITLE 'EMPLOYEES IN REGION 1'
 44 LINE NAME-FIRST NAME-LAST EMP# BRANCH

MM/DD/YY EMPLOYEES IN REGION 1 PAGE 1

 FIRST LAST EMPLOYEE
 NAME NAME NUMBER BRANCH

 GLORIA WIMN 12267 01
 NANCY BERG 11473 02
 GEORGE CORNING 02688 03
 MARY NAGLE 00370 02
 LINDA ARNOLD 01963 04
 VIRGINIA MANHART 11602 03
 ELAINE TALL 11931 04
 LYDIA BRANDOW 02200 01
 RODNEY LARSON 11357 04
 JULIE BYER 11467 04

Examples E–11

Basic Examples

Example 2: Proposed Salary Schedules

E–12 Reference Guide

57 PRINT SUMMARY-BY-CATEGORY
58 *
59 REPORT DETAIL-BY-BRANCH LINESIZE 78
60 SEQUENCE BRANCH PAY-GROSS D

The Personnel Department requested an evaluation of a proposed raise for the
employees of Region 4. Employees with a job category of 10 are to be given a 7
percent raise; all others are to receive a 9 percent raise. Two reports are to be
generated:

■ A list of employees by branch, ordered by decreasing new salary, and
totaled by branch and region

■ A summary breakdown by job category within branch.

Region 4 employees are actually selected by rejecting all records with a region
code other than 4. The raise percentage value is set based on the job category.
The raise amount (in dollars), and the new gross salary are calculated for each
selected employee.

Finally, the two desired reports are generated. In DETAIL-BY-BRANCH, notice
the descending sort on PAY-GROSS.

Note: The use of the BEFORE-BREAK procedure for calculating the total raise
percent for the region and for the branch.

This is a very powerful facility and is used in many of the examples.

The SUMMARY-BY-CATEGORY is a straightforward summary report.

Note: The sequence of each report is independent. This enables a wide variety of
reports to be generated with a single pass of the input file.
 1 *
 2 * EXAMPLE 2
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 RAISE-PERCENT W 3 P 2 HEADING('RAISE' '(PERCENT)')
36 RAISE-DOLLARS W 4 P 2 HEADING('RAISE' '(DOLLARS)')
37 NEW-SALARY W 4 P 2 HEADING('PROPOSED' 'SALARY')
38 *
39 *
40 JOB
41 IF REGION NQ 4 . * REJECT UNDESIRED RECORDS
43 GOTO JOB
44 END-IF
45 IF JOB-CATEGORY = 10 . * SET RAISE AMT BASED ON
47 RAISE-PERCENT = 7.00 . * JOB-CATEGORY
49 ELSE
50 RAISE-PERCENT = 9.00
51 END-IF
52 * CALCULATE RAISE IN DOLLARS AND NEW GROSS PAY
53 RAISE-DOLLARS = RAISE-PERCENT * PAY-GROSS / 100 + .005
54 NEW-SALARY = PAY-GROSS + RAISE-DOLLARS
55 PRINT DETAIL-BY-BRANCH . * PRINT DESIRED REPORTS

Basic Examples

61 CONTROL BRANCH
62 TITLE 1 'PROPOSED SALARY SCHEDULE FOR REGION 4 EMPLOYEES'
63 TITLE 2 'DETAIL BY BRANCH -- DESCENDING PAY-GROSS'
64 LINE 1 BRANCH NAME-LAST PAY-GROSS RAISE-DOLLARS RAISE-PERCENT -
 NEW-SALARY
65 BEFORE-BREAK. PROC
67 RAISE-PERCENT = RAISE-PERCENT / TALLY + .005
68 END-PROC
69 *
70 REPORT SUMMARY-BY-CATEGORY SUMMARY LINESIZE 78
71 SEQUENCE BRANCH JOB-CATEGORY
72 CONTROL BRANCH JOB-CATEGORY
73 TITLE 1 'PROPOSED SALARY SCHEDULE FOR REGION 4'
74 TITLE 2 'SUMMARY BY JOB-CATEGORY AND BRANCH'
75 LINE 1 BRANCH JOB-CATEGORY PAY-GROSS NEW-SALARY RAISE-DOLLARS

MM/DD/YY PROPOSED SALARY SCHEDULE FOR REGION 4 EMPLOYEES PAGE 1
 DETAIL BY BRANCH -- DESCENDING PAY-GROSS

 LAST GROSS RAISE RAISE PROPOSED
BRANCH NAME PAY (DOLLARS) (PERCENT) SALARY

 01 TALUS 460.80 41.47 9.00 502.27
 RYAN 399.20 27.94 7.00 427.14
 WARD 183.75 12.86 7.00 196.61
 01 1,043.75 82.27 7.67 1,126.02

 02 JOHNSON 712.80 49.90 7.00 762.70
 HAFER 121.95 10.98 9.00 132.93
 02 834.75 60.88 8.00 895.63

 03 JONES 804.80 72.43 9.00 877.23
 WALTERS 424.00 29.68 7.00 453.68
 ZOLTAN 125.00 11.25 9.00 136.25
 03 1,353.80 113.36 8.33 1,467.16

 04 JUDAR 591.20 53.21 9.00 644.41
 04 591.20 53.21 9.00 644.41

 3,823.50 309.72 8.11 4,133.22

Examples E–13

Basic Examples

MM/DD/YY PROPOSED SALARY SCHEDULE FOR REGION 4 PAGE 1
 SUMMARY BY JOB-CATEGORY AND BRANCH

 JOB GROSS PROPOSED RAISE
 BRANCH CATEGORY PAY SALARY (DOLLARS)

 01 10 582.95 623.75 40.80
 01 25 460.80 502.27 41.47
 01 1,043.75 1,126.02 82.27

 02 10 712.80 762.70 49.90
 02 60 121.95 132.93 10.98
 02 834.75 895.63 60.88

 03 10 424.00 453.68 29.68
 03 40 929.80 1,013.48 83.68
 03 1,353.80 1,467.16 113.36

 04 25 591.20 644.41 53.21
 04 591.20 644.41 53.21

 3,823.50 4,133.22 309.72

E–14 Reference Guide

Basic Examples

Examples E–15

67 LINE 7 'DEAR' NAME-FIRST
68 LINE 9 'IT IS WITH GREAT PLEASURE THAT ABC SYSTEMS IS'
69 LINE 10 'PROVIDING YOU A SALARY INCREASE EFFECTIVE ON'
70 LINE 11 'YOUR NEXT PAY CHECK. THE INCREASE REFLECTS YOUR'

Example 3: Employee Letters

The Personnel Department decided to accept the proposed salary adjustments
and wishes to generate letters to all employees informing them of the salary
adjustment. In addition to the letter, a mailing label must be generated. Order
letters and mailing labels by ZIP code to minimize mailing costs.

This is the same basic job as the previous example, but the output is different.
Instead of a standard report, a letter is generated. Notice the ease with which the
letter is specified. By including the parameters SKIP 1 and PAGESIZE 40, we
ensure only one letter per page. The mailing labels are generated by specifying
their content. The ACROSS 2 parameter allows the labels to fit on the page of this
document - ACROSS 4 is normal for most label runs.

The letters could be generated two-on-a-page, if desired, by replacing PAGESIZE
40 with LABELS (ACROSS 2 DOWN 40). Labels are simply a special type of
report.
 1 *
 2 * EXAMPLE 3
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 OLD-SALARY PAY-GROSS PAY-GROSS MASK(S '$$$$$.99')
36 RAISE-PERCENT W 3 P 2 HEADING('RAISE' '(PERCENT)')
37 RAISE-DOLLARS W 4 P 2 HEADING('RAISE' '(DOLLARS)') -
 MASK S
38 NEW-SALARY W 4 P 2 HEADING('PROPOSED' 'SALARY') -
 MASK S
39 *
40 *
41 JOB
42 IF REGION NE 4 . * REJECT UNDESIRED RECORDS
44 GOTO JOB
45 END-IF
46 IF JOB-CATEGORY = 10 . * SET RAISE AMT BASED ON
48 RAISE-PERCENT = 7.00 . * JOB-CATEGORY
50 ELSE
51 RAISE-PERCENT = 9.00
52 END-IF
53 * CALCULATE RAISE IN DOLLARS AND NEW GROSS PAY
54 RAISE-DOLLARS = RAISE-PERCENT * OLD-SALARY / 100 + .005
55 NEW-SALARY = PAY-GROSS + RAISE-DOLLARS
56 PRINT EMPLOYEE-LETTER . * PRINT LETTER AND
58 PRINT MAILING-LABEL . * MAILING LABEL
60 *
61 REPORT EMPLOYEE-LETTER LINESIZE 78 -
 NOHEADING NOADJUST SPACE 1 PAGESIZE 40 SKIP 1
62 SEQUENCE ADDR-ZIP
63 LINE 1 COL 1 'ABC SYSTEMS, INC.' COL 60 SYSDATE
64 LINE 3 NAME-FIRST NAME-LAST
65 LINE 4 ADDR-STREET
66 LINE 5 ADDR-CITY ADDR-STATE ADDR-ZIP

Basic Examples

71 LINE 12 'EFFORTS IN MAKING ABC SYSTEMS THE LEADER IN THE'
72 LINE 13 'FIELD OF FINANCIAL COMPUTER SYSTEMS.'
73 LINE 15 'IN YOUR PARTICULAR CASE THE INCREASE IS' RAISE-PERCENT -
 '%'
74 LINE 16 'OF YOUR GROSS SALARY OF' OLD-SALARY '. THIS EQUATES'
75 LINE 17 'TO' RAISE-DOLLARS ', OR A NEW GROSS SALARY OF' -
 NEW-SALARY '.'
76 LINE 19 'THE EXECUTIVE BOARD OF ABC SYSTEMS CONGRATULATES'
77 LINE 20 'YOU AND LOOKS FORWARD TO AN EVEN BETTER COMING YEAR.'
78 LINE 23 'SINCERELY,'
79 LINE 27 'FRANK K. WILLIAMS'
80 LINE 28 'PRESIDENT'
81 *
82 REPORT MAILING-LABEL LABELS ACROSS 2
83 SEQUENCE ADDR-ZIP
84 LINE 1 NAME-FIRST NAME-LAST
85 LINE 2 ADDR-STREET
86 LINE 3 ADDR-CITY ADDR-STATE ADDR-ZIP

ABC SYSTEMS, INC. MM/DD/YY

KAREN WALTERS
1022 5 KENSINGTON PK
LOS ANGELES CA 90030

DEAR KAREN

IT IS WITH GREAT PLEASURE THAT ABC SYSTEMS IS
PROVIDING YOU A SALARY INCREASE EFFECTIVE ON
YOUR NEXT PAY CHECK. THE INCREASE REFLECTS YOUR
EFFORTS IN MAKING ABC SYSTEMS THE LEADER IN THE
FIELD OF FINANCIAL COMPUTER SYSTEMS.

IN YOUR PARTICULAR CASE THE INCREASE IS 7.00 %
OF YOUR GROSS SALARY OF $424.00 . THIS EQUATES
TO $29.68 , OR A NEW GROSS SALARY OF $453.68 .

THE EXECUTIVE BOARD OF ABC SYSTEMS CONGRATULATES
YOU AND LOOKS FORWARD TO AN EVEN BETTER COMING YEAR.

SINCERELY,

FRANK K. WILLIAMS
PRESIDENT

E–16 Reference Guide

Basic Examples

ABC SYSTEMS, INC. MM/DD/YY

ALFRED JONES
2070 BELMONT ROAD NW
LOS ANGELES CA 90052

DEAR ALFRED

IT IS WITH GREAT PLEASURE THAT ABC SYSTEMS IS
PROVIDING YOU A SALARY INCREASE EFFECTIVE ON
YOUR NEXT PAY CHECK. THE INCREASE REFLECTS YOUR
EFFORTS IN MAKING ABC SYSTEMS THE LEADER IN THE
FIELD OF FINANCIAL COMPUTER SYSTEMS.

IN YOUR PARTICULAR CASE THE INCREASE IS 9.00 %
OF YOUR GROSS SALARY OF $804.80 . THIS EQUATES
TO $72.43 , OR A NEW GROSS SALARY OF $877.23 .

THE EXECUTIVE BOARD OF ABC SYSTEMS CONGRATULATES
YOU AND LOOKS FORWARD TO AN EVEN BETTER COMING YEAR.

SINCERELY,

FRANK K. WILLIAMS
PRESIDENT

ABC SYSTEMS, INC. MM/DD/YY

JANET ZOLTAN
2026 FORT DAVIS ST S
LOS ANGELES CA 90091

DEAR JANET

IT IS WITH GREAT PLEASURE THAT ABC SYSTEMS IS
PROVIDING YOU A SALARY INCREASE EFFECTIVE ON
YOUR NEXT PAY CHECK. THE INCREASE REFLECTS YOUR
EFFORTS IN MAKING ABC SYSTEMS THE LEADER IN THE
FIELD OF FINANCIAL COMPUTER SYSTEMS.

IN YOUR PARTICULAR CASE THE INCREASE IS 9.00 %
OF YOUR GROSS SALARY OF $125.00 . THIS EQUATES
TO $11.25 , OR A NEW GROSS SALARY OF $136.25 .

THE EXECUTIVE BOARD OF ABC SYSTEMS CONGRATULATES
YOU AND LOOKS FORWARD TO AN EVEN BETTER COMING YEAR.

SINCERELY,

FRANK K. WILLIAMS
PRESIDENT

Examples E–17

Basic Examples

KAREN WALTERS ALFRED JONES
1022 5 KENSINGTON PK 2070 BELMONT ROAD NW
LOS ANGELES CA 90030 LOS ANGELES CA 90052

JANET ZOLTAN ARTHUR HAFER
2026 FORT DAVIS ST S 806 CONNECTICUT AVE
LOS ANGELES CA 90091 SAN DIEGO CA 92031

LISA JOHNSON PAULA JUDAR
806 CONNECTICUT AVE 4333 46TH ST N W
SAN DIEGO CA 92045 SAN FRANCISC CA 94041

RUTH TALUS PAMELA RYAN
9331 CAROLINE AVENUE 1717 R N W #301
SEATTLE WA 98003 SEATTLE WA 98009

MARINA WARD
1725 H ST NE APT 2
SEATTLE WA 98015

E–18 Reference Guide

Basic Examples

Examples E–19

1412 36TH ST NW
NEW YORK NY 10091

Example 4: Mailing Labels

The Personnel Department has requested a mailing label run for all employees in
Regions 1 and 2. These labels should be ordered by ZIP code, with a break on
ZIP code prefix (first three digits), to receive a lower postage rate.

Selecting the desired employee records to be passed to the report processor for
formatting into labels is simple. More complex is the control break when the ZIP
code prefix changes. Notice the redefinition of the ZIP code field to allow sorting
on the first three digits. After a break occurs, the next label begins on a new line.
Additional spacing can be obtained by a BEFORE-BREAK procedure that issues
a DISPLAY SKIP 6 statement.
 1 *
 2 * EXAMPLE 4
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 ZIP-PREFIX ADDR-ZIP 3 N . * REDEFINE FIRST 3 DIGITS OF ZIP
37 *
38 *
39 JOB
40 IF REGION EQ 1 2 . * SELECT DESIRED RECORDS
42 PRINT MAILING-LABEL . * PRINT MAILING LABEL
44 END-IF
45 *
46 REPORT MAILING-LABEL LABELS (ACROSS 3 SIZE 28) SPACE 1
47 SEQUENCE ADDR-ZIP . * SORT ON ZIP CODE
49 CONTROL ZIP-PREFIX . * BREAK ON ZIP PREFIX
51 LINE 1 EMP# REGION BRANCH
52 LINE 3 NAME-FIRST NAME-LAST
53 LINE 4 ADDR-STREET
54 LINE 5 ADDR-CITY ADDR-STATE ADDR-ZIP

12267 1 01 02200 1 01

GLORIA WIMN LYDIA BRANDOW
430 M ST SW 107 3616 B ST S E
BOSTON MA 02005 BOSTON MA 02011

11602 1 03 02688 1 03

VIRGINIA MANHART GEORGE CORNING
1305 POTOMAC ST N W 3208 S 5TH
TRENTON NJ 08521 TRENTON NJ 08535

01963 1 04 11357 1 04 11467 1 04

LINDA ARNOLD RODNEY LARSON JULIE BYER
1569 COLONIAL TERR A 610 H ST SW 3400 NORTH 18TH STRE
NEW YORK NY 10012 NEW YORK NY 10059 NEW YORK NY 10071

11931 1 04

ELAINE TALL

Basic Examples

02765 2 03 04234 2 03 03416 2 03

RALPH DENNING BARBARA MCMAHON BILL FORREST
1629 16TH ST NW APT 1318 24TH STREET S 1545 18TH ST NW
WASHINGTON DC 20005 WASHINGTON DC 20015 WASHINGTON DC 20018

00577 2 03

KATHY PETRIK
5005 BENTON AVE
WASHINGTON DC 20032

00370 1 02 11473 1 02

MARY NAGLE NANCY BERG
826 D STREET SE 3710 JENIFER ST N W
BALTIMORE MD 21034 BALTIMORE MD 21055

04225 2 05 01895 2 05

NED LOYAL DENISE VETTER
17 KENNEDY STREET 7311 KEYSTONE LANE 4
RALEIGH NC 27516 RALEIGH NC 27591

11710 2 02 03571 2 02

CAROL POWELL MAX KRUSE
5023 AMES STREET N E 2161 N PIERCE STREET
ATLANTA GA 30316 ATLANTA GA 30345

00445 2 04

JEAN POST
1250 4TH ST SW
JACKSONVILLE FL 32052

11376 2 01

PATTI HUSS
1355 TEWKESBURY PLAC
CLEARWATER FL 33512

Example 5: Tally Reports

The Personnel Department wants tallies on various fields within the personnel
file. Each tally report is to list the number of employees in the specified category
and the percent of the total employees that number represents. The desired
categories are:

■ Sex

■ Marital status

■ Job category

■ Salary code

E–20 Reference Guide

■ Gross pay in $100 increments

■ City

Basic Examples

This job generates five separate summary reports; the first two categories are
combined in the first report. The report process does most of the work. All that is
done explicitly is the percent calculation in the BEFORE-BREAK procedure.

Examples E–21

 88 LINE 1 JOB-CATEGORY TALLY PERCENT
 89 BEFORE-BREAK. PROC . * CALCULATE PERCENT
 92 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
 93 END-PROC

If the illustration of the coding seems overwhelming to read, follow one report at
a time (the way the code is processed). The report data is collected in work files,
usually one for each report. After the input file is read, the output for each report
is formatted serially. There are some exceptions to this flow, but it is the norm.

As you are reading the code, notice the use of W and S fields, and how rounding
is performed in the percent calculations. Note also that generating a number of
reports from a single pass of the file dramatically reduces the resources required
without increasing the complexity of the job.
 1 *
 2 * EXAMPLE 5
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
 35 SEX-CODE W 6 A HEADING 'SEX'
 36 GROSS-RANGE W 3 P HEADING ('SALARY RANGE' 'HUNDRED $ INCR')
 37 TOTAL-EMPLOYEES S 3 P 0
 38 PERCENT W 3 P 2 HEADING('PERCENT' 'OF' 'TOTAL')
 39 *
 40 *
 41 JOB
 42 TOTAL-EMPLOYEES = TOTAL-EMPLOYEES + 1
 43 *
 44 IF SEX EQ 1 . * SET PROPER SEX CODE
 46 SEX-CODE = 'FEMALE'
 47 ELSE
 48 SEX-CODE = 'MALE'
 49 END-IF
 50 PRINT SEX-MARITAL-STAT-RPT . * PRINT REPORT
 52 *
 53 PRINT JOB-CATEGORY-RPT . * PRINT REPORT
 55 *
 56 PRINT SALARY-CODE-RPT . * PRINT REPORT
 58 *
 59 GROSS-RANGE = PAY-GROSS / 100.00 . * CALCULATE GROSS SALARY
 61 GROSS-RANGE = GROSS-RANGE * 100 . * RANGE
 63 PRINT GROSS-PAY-RPT . * PRINT THE REPORT
 65 *
 66 PRINT CITY-RPT . * PRINT THE CITY REPORT
 68 *
 69 REPORT SEX-MARITAL-STAT-RPT SUMMARY LINESIZE 78
 70 SEQUENCE SEX-CODE MARITAL-STAT . * SORT REPORT
 72 CONTROL SEX-CODE MARITAL-STAT . * BREAK SPECIFICATION
 74 TITLE 1 'TALLY OF EMPLOYEES BY SEX AND MARITAL STATUS'
 75 LINE 1 SEX-CODE MARITAL-STAT TALLY PERCENT
 76 BEFORE-BREAK. PROC . * CALCULATE PERCENT
 79 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
 80 END-PROC
 81 *
 82 REPORT JOB-CATEGORY-RPT SUMMARY LINESIZE 78
 83 SEQUENCE JOB-CATEGORY . * SORT REPORT
 85 CONTROL JOB-CATEGORY . * BREAK SPECIFICATION
 87 TITLE 1 'TALLY OF EMPLOYEES BY JOB CATEGORY'

Basic Examples

 94 *
 95 REPORT SALARY-CODE-RPT SUMMARY LINESIZE 78
 96 SEQUENCE SALARY-CODE . * SORT REPORT
 98 CONTROL SALARY-CODE . * BREAK SPECIFICATION
100 TITLE 1 'TALLY OF EMPLOYEES BY SALARY CODE'
101 LINE 1 SALARY-CODE TALLY PERCENT
102 BEFORE-BREAK. PROC . * CALCULATE PERCENT
105 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
106 END-PROC
107 *
108 REPORT GROSS-PAY-RPT SUMMARY LINESIZE 78
109 SEQUENCE GROSS-RANGE D . * SORT REPORT
111 CONTROL GROSS-RANGE . * BREAK SPECIFICATION
113 TITLE 1 'TALLY OF EMPLOYEES BY GROSS SALARY RANGE'
114 HEADING PAY-GROSS ('AVERAGE' 'GROSS' 'SALARY')
115 LINE 1 GROSS-RANGE TALLY PERCENT PAY-GROSS
116 BEFORE-BREAK. PROC . * CALCULATE PERCENT
119 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
120 PAY-GROSS = PAY-GROSS / TALLY + .005
121 END-PROC
122 *
123 REPORT CITY-RPT SUMMARY LINESIZE 78
124 SEQUENCE ADDR-CITY . * SORT REPORT
126 CONTROL ADDR-CITY . * BREAK SPECIFICATION
128 TITLE 1 'TALLY OF EMPLOYEES BY HOME CITY'
129 LINE 1 ADDR-CITY TALLY PERCENT
130 BEFORE-BREAK. PROC . * CALCULATE PERCENT
133 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
134 END-PROC

E–22 Reference Guide

Basic Examples

MM/DD/YY TALLY OF EMPLOYEES BY SEX AND MARITAL STATUS PAGE 1

 PERCENT
 MARITAL OF
 SEX STATUS TALLY TOTAL

 FEMALE M 13 27.08
 FEMALE S 23 47.92
 FEMALE 36 75.00

 MALE M 5 10.42
 MALE S 7 14.58
 MALE 12 25.00

 48 100.00

MM/DD/YY TALLY OF EMPLOYEES BY JOB CATEGORY PAGE 1

 PERCENT
 JOB OF
 CATEGORY TALLY TOTAL

 10 22 45.83
 20 2 4.17
 23 1 2.08
 25 8 16.67
 30 2 4.17
 40 6 12.50
 60 7 14.58
 48 100.00

Examples E–23

Basic Examples

MM/DD/YY TALLY OF EMPLOYEES BY SALARY CODE PAGE 1

 PERCENT
 SALARY OF
 CODE TALLY TOTAL

 01 20 41.67
 02 2 4.17
 03 9 18.75
 05 2 4.17
 06 7 14.58
 08 8 16.67
 48 100.00

MM/DD/YY TALLY OF EMPLOYEES BY GROSS SALARY RANGE PAGE 1

 PERCENT AVERAGE
 SALARY RANGE OF GROSS
 HUNDRED $ INCR TALLY TOTAL SALARY

 1000 1 2.08 1,004.00
 800 2 4.17 804.72
 700 3 6.25 736.00
 600 1 2.08 628.00
 500 2 4.17 572.80
 400 4 8.33 455.64
 300 17 35.42 348.19
 200 10 20.83 264.29
 100 7 14.58 154.92
 1 2.08 13.80
 48 100.00 376.63

E–24 Reference Guide

Basic Examples

MM/DD/YY TALLY OF EMPLOYEES BY HOME CITY PAGE 1

 PERCENT
 OF
 CITY TALLY TOTAL

 ATLANTA 2 4.17
 BALTIMORE 2 4.17
 BOSTON 2 4.17
 CHICAGO 6 12.50
 CLEARWATER 1 2.08
 DALLAS 6 12.50
 JACKSONVILLE 1 2.08
 KANSAS CITY 4 8.33
 LOS ANGELES 3 6.25
 MINNEAPOLIS 3 6.25
 NEW YORK 4 8.33
 RALEIGH 2 4.17
 SAN DIEGO 2 4.17
 SAN FRANCISC 1 2.08
 SEATTLE 3 6.25
 TRENTON 2 4.17
 WASHINGTON 4 8.33
 48 100.00

Examples E–25

Basic Examples

Example 6: Phone Number Selection

The National Federation of Business and Professional Women's Clubs is
recruiting for a chapter in the Chicago area. They requested a list of all female
employees in the Chicago branch, along with their phone numbers.

This example is a simple process of selecting records based on the value in two
fields, ADDR and SEX, then sequencing the report by name.
 1 *
 2 * EXAMPLE 6
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 *
36 *
37 JOB . * SELECT DESIRED RECORDS
39 IF ADDR-CITY EQ 'CHICAGO' AND SEX = 1
40 PRINT PHONE-LIST . * PRINT PHONE LIST
42 END-IF
43 *
44 REPORT PHONE-LIST LINESIZE 78
45 SEQUENCE NAME-LAST NAME-FIRST . * SORT ON NAME
47 TITLE 1 'CHICAGO AREA WOMEN AND TELEPHONE NUMBERS'
48 LINE 1 NAME-FIRST NAME-LAST TELEPHONE

MM/DD/YY CHICAGO AREA WOMEN AND TELEPHONE NUMBERS PAGE 1

 FIRST LAST TELEPHONE
 NAME NAME NUMBER

 LINDA EPERT (312) 588-5118
 JOAN MILLER (312) 588-6701
 DEBBIE NORIDGE (312) 646-0934
 PAT ROGERS (312) 646-1650
 ANN STRIDE (312) 646-1891

E–26 Reference Guide

Basic Examples

Example 7: Salary Tally Report

The Personnel Department requested that the Salary Range Report produced in
Example 5 be expanded to include a bar chart of tally percent. The bar graph is
generated using the MOVE statement within the BEFORE-BREAK procedure.
For each two percentage points, an asterisk is plotted. If the percentage exceeds
60 percent, spaces are printed.

As illustrated in this and several of the previous examples, the BEFORE-BREAK
procedure is invaluable. It allows us to modify the contents of a summary line
prior to printing (a common requirement in many control reports).
 1 *
 2 * EXAMPLE 7
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 GROSS-RANGE W 3 P HEADING ('SALARY RANGE' 'HUNDRED $ INCR')
36 TOTAL-EMPLOYEES S 3 P 0
37 PERCENT W 3 P 2 HEADING('PERCENT' 'OF' 'TOTAL')
38 BAR-GRAPH S 30 A HEADING('PERCENT OF EMPLOYEES' -
 'EACH ASTERISK EQUALS 2%')
39 ASTERISKS S 30 A VALUE('******************************')
40 ILTH S 2 P
41 *
42 *
43 JOB
44 TOTAL-EMPLOYEES = TOTAL-EMPLOYEES + 1
45 *
46 GROSS-RANGE = PAY-GROSS / 100.00 . * CALCULATE GROSS SALARY
48 GROSS-RANGE = GROSS-RANGE * 100 . * RANGE
50 PRINT GROSS-PAY-RPT . * PRINT THE REPORT
52 *
53 REPORT GROSS-PAY-RPT SUMMARY SUMCTL DTLCOPY LINESIZE 78
54 SEQUENCE GROSS-RANGE D . * SORT REPORT
56 CONTROL GROSS-RANGE . * BREAK SPECIFICATION
58 TITLE 1 'TALLY OF EMPLOYEES BY GROSS SALARY RANGE'
59 LINE 1 GROSS-RANGE TALLY PERCENT BAR-GRAPH
60 BEFORE-BREAK. PROC . * CALCULATE PERCENT
63 PERCENT = TALLY * 100 / TOTAL-EMPLOYEES + .005
64 ILTH = (PERCENT + 1) / 2
65 IF ILTH LE 30
66 MOVE ASTERISKS ILTH TO BAR-GRAPH
67 ELSE
68 MOVE SPACES TO BAR-GRAPH
69 END-IF
70 END-PROC

Examples E–27

Basic Examples

MM/DD/YY TALLY OF EMPLOYEES BY GROSS SALARY RANGE PAGE 1

 PERCENT
 SALARY RANGE OF PERCENT OF EMPLOYEES
 HUNDRED $ INCR TALLY TOTAL EACH ASTERISK EQUALS 2%

 1000 1 2.08 *
 800 2 4.17 **
 700 3 6.25 ***
 600 1 2.08 *
 500 2 4.17 **
 400 4 8.33 ****
 300 17 35.42 ******************
 200 10 20.83 **********
 100 7 14.58 *******
 1 2.08 *
 48 100.00

E–28 Reference Guide

Basic Examples

Example 8: File Expansion

The Personnel master file record has run out of room, and it is necessary to
expand and reformat it. Following is a diagram describing the operation.

The key to this example is the proper definition of the fields within each file. By
using the same name for the corresponding fields in each file, all five data moves
are performed with one MOVE LIKE statement. The new fields are easily
initialized with the MOVE statement.

Examples E–29

Basic Examples

 1 *
 2 * EXAMPLE 8
 3 *
 4 FILE PERSIN . * INPUT FILE
 6 DATA-1 1 50 A
 7 DATA-2 51 20 A
 8 DATA-3 71 50 A
 9 DATA-4 121 20 A
10 DATA-5 141 10 A
11 *
12 FILE PERSOUT FB(200 3600) . * REFORMATTED OUTPUT FILE
14 DATA-1 1 50 A
15 NEW-1 51 10 N 0
16 DATA-2 61 20 A
17 NEW-2 81 4 P
18 NEW-3 85 5 P
19 NEW-4 90 6 N 0
20 DATA-3 96 50 A
21 NEW-5 146 10 A
22 DATA-5 156 10 A
23 NEW-6 166 13 A
24 NEW-7 179 2 B
25 DATA-4 181 20 A
26 *
27 *
28 JOB FINISH WRAP-UP
29 MOVE LIKE PERSIN TO PERSOUT . * MOVE LIKE NAMED FIELDS
31 * FROM PERSIN TO PERSOUT
32 MOVE ZERO TO NEW-1 NEW-2 NEW-3 NEW-4 NEW-7
33 * INITIALIZE NUMERIC FIELDS
34 MOVE SPACE TO NEW-5 NEW-6 . * INITIALIZE ALPHA FIELDS
36 PUT PERSOUT . * OUTPUT THE REFORMATTED FILE
38 *
39 WRAP-UP. PROC
41 DISPLAY NEWPAGE 'TOTAL INPUT RECORDS = ' RECORD-COUNT(PERSIN)
42 DISPLAY SKIP 2 'TOTAL OUTPUT RECORDS = ' RECORD-COUNT(PERSOUT)
43 END-PROC

--

TOTAL INPUT RECORDS = 48

TOTAL OUTPUT RECORDS = 48

--

E–30 Reference Guide

Basic Examples

Example 9: Average Regional Gross Salary

The region codes of the personnel file represent regions of the United States. In
most cases it is more desirable to output a text description of the region than to
print the code. The conversion is performed by the CA-Easytrieve Plus table
handling facility.

In this example, the Personnel Department requested a report of average gross
salaries for each region. The input records are read and totals are calculated for
the number of employees and the gross salaries. The SEARCH statement obtains
the text description of the region code, and the information is output on a report.

Notice that the SEQUENCE statement specifies the region code while the
CONTROL break is based on REGION-TEXT. This enables the report to be
ordered on region code while still printing the region text. Also, notice that most
of the printed values are generated in the BEFORE-BREAK procedure. The order
of the first two statements in that procedure is mandatory because the second
statement modifies the AVERAGE-GROSS.

Examples E–31

Basic Examples

 1 *
 2 * EXAMPLE 9
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 AVERAGE-GROSS W 4 P 2 HEADING ('AVERAGE' 'GROSS' 'SALARY')
36 TOTAL-GROSS S 6 P 2
37 PERCENT-GROSS W 3 P 2 HEADING ('PERCENT OF' 'COMPANY' 'GROSS')
38 PERCENT-TALLY W 3 P 2 -
 HEADING('PERCENT OF' 'COMPANY' 'EMPLOYEES')
39 SALARY-RATIO W 3 P 3 HEADING('RATIO OF' '%-GROSS /' '%-TALLY')
40 TOTAL-EMPLOYEES S 3 P 0
41 REGION-TEXT W 10 A HEADING('COMPANY' 'REGION')
42 *
43 FILE RGNID TABLE INSTREAM . * DEFINE INSTREAM REGION TABLE
45 ARG 1 1 N. DESC 3 10 A. * DEFINE TABLE SPECIAL FIELD IDS
48 1 NORTHEAST
 2 SOUTHEAST
 3 CENTRAL
 4 WEST
 ENDTABLE
49 *
50 *
51 JOB
52 TOTAL-EMPLOYEES = TOTAL-EMPLOYEES + 1 . * CALCULATE TOTAL EMPLOYEES
54 AVERAGE-GROSS = PAY-GROSS . * AVERAGE = GROSS FOR EACH RECD
56 TOTAL-GROSS = TOTAL-GROSS + PAY-GROSS
57 * CALCULATE TOTAL GROSS FOR COMP
58 * SEARCH TABLE FOR MATCHING REGION INFORMATION
59 SEARCH RGNID WITH REGION GIVING REGION-TEXT
60 *
61 PRINT AVG-SALARY-RPT . * PRINT THE REPORT
63 *
64 REPORT AVG-SALARY-RPT SUMMARY LINESIZE 78
65 SEQUENCE REGION . * SORT REPORT
67 CONTROL REGION-TEXT . * BREAK SPECIFICATION
69 TITLE 1 'AVERAGE GROSS SALARY BY REGION'
70 HEADING TALLY ('NUMBER' 'OF' 'EMPLOYEES')
71 LINE 1 REGION-TEXT TALLY PERCENT-TALLY -
 AVERAGE-GROSS PERCENT-GROSS SALARY-RATIO
72 BEFORE-BREAK. PROC . * CALCULATE PERCENT
75 PERCENT-GROSS = AVERAGE-GROSS * 100 / TOTAL-GROSS + .005
76 AVERAGE-GROSS = AVERAGE-GROSS / TALLY + .005
77 PERCENT-TALLY = TALLY * 100 / TOTAL-EMPLOYEES + .005
78 SALARY-RATIO = PERCENT-GROSS / PERCENT-TALLY + .0005
79 END-PROC

MM/DD/YY AVERAGE GROSS SALARY BY REGION PAGE 1

 NUMBER PERCENT OF AVERAGE PERCENT OF RATIO OF
 COMPANY OF COMPANY GROSS COMPANY %-GROSS /
 REGION EMPLOYEES EMPLOYEES SALARY GROSS %-TALLY

NORTHEAST 10 20.83 460.12 25.45 1.222
SOUTHEAST 10 20.83 246.98 13.66 .656
CENTRAL 19 39.58 378.08 39.74 1.004
WEST 9 18.75 424.83 21.15 1.128
 48 100.00 376.63 100.00 1.000

E–32 Reference Guide

Basic Examples

Example 10: Central Region Employees

The Personnel Department has requested an alphabetical list of employees in the
central region. The report is to include the employees' name, social security
number, department code, and department name. In addition, Personnel needs a
list of the central region employees grouped by department name.

To solve this problem we must know that each employee is assigned to a
particular company department, the number of which is contained within each
employee record. In addition to the number, each department has a unique
department name, such as Engineering, and Marketing. A table of department
numbers and the corresponding names is available in a table filenamed
DPTCODE.

First, we select all employees in Region 3 (Central Region). For each such
employee, we search the DPTCODE table for the corresponding department
name. If no entry is found, we insert a dummy department name (*NO TABLE
ENTRY) and issue a PRINT to an error report. Regardless of whether a
department name is found, we issue a PRINT statement to both the
ALPHA-LIST and the RPT-BY-DEPT reports.

ALPHA-LIST is a simple list, sequenced by name. The RPT-BY-DEPT is a control
report with breaks on DEPT. Notice the use of the HEADING statement to
supply alternate report headings for the specified fields; this is the only way to
change the heading for TALLY. Also note that printing is suppressed for the
summary line in the MISSING-DEPT-CODE report.

Examples E–33

Basic Examples

 1 *
 2 * EXAMPLE 10
 3 *
 4 FILE PERSNL FB(150 1800)
 5 %PERSNL
35 *
36 DEPT-NAME W 15 A HEADING ('DEPARTMENT' 'NAME')
37 *
38 FILE DPTCODE TABLE . * TABLE FILE DEFINITION
40 ARG 1 3 N. DESC 5 15 A
42 *
43 *
44 JOB
45 IF REGION NE 3 . * SELECT REGION 3 EMPLOYEES
47 GO TO JOB . * SKIP ALL OTHERS
49 END-IF
50 SEARCH DPTCODE WITH DEPT GIVING DEPT-NAME
51 * GET DEPT NAME FROM TABLE
52 IF NOT DPTCODE . * IF NO DEPT NAME PRESENT
54 DEPT-NAME = '*NO TABLE ENTRY' . * INDICATE MISSING ENTRY
56 PRINT MISSING-DEPT-CODE . * OUTPUT ERROR REPORT
58 END-IF
59 PRINT ALPHA-LIST . * PRINT ALPHA LISTING
61 PRINT RPT-BY-DEPT . * OUTPUT REPORT BY DEPARTMENT
63 *
64 REPORT ALPHA-LIST LINESIZE 78
65 SEQUENCE NAME-LAST NAME-FIRST
66 TITLE 'CENTRAL REGION EMPLOYEES'
67 LINE NAME-LAST NAME-FIRST SSN DEPT DEPT-NAME
68 *
69 REPORT RPT-BY-DEPT SUMCTL NONE LINESIZE 78
70 SEQUENCE DEPT-NAME NAME-LAST . * SEQUENCE BY DEPT AND NAME
72 CONTROL DEPT-NAME . * CONTROL BREAK ON DEPT
74 TITLE 'CENTRAL REGION EMPLOYEES BY DEPARTMENT'
75 HEADING TALLY ('NUMBER' 'OF' 'EMPLOYEES')
76 LINE DEPT-NAME BRANCH NAME-LAST NAME-FIRST TALLY
77 *
78 REPORT MISSING-DEPT-CODE SUMMARY LINESIZE 78
79 SEQUENCE DEPT . * SEQUENCE BY DEPT
81 CONTROL FINAL NOPRINT DEPT . * CONTROL BREAK ON DEPT
83 TITLE 'CENTRAL REGION MISSING DEPARTMENT DESCRIPTIONS'
84 HEADING DEPT ('MISSING' 'DEPARTMENT' 'CODES')
85 HEADING TALLY ('NUMBER' 'OF' 'EMPLOYEES')
86 LINE DEPT TALLY

E–34 Reference Guide

Basic Examples

MM/DD/YY CENTRAL REGION EMPLOYEES PAGE 1

 SOCIAL
 LAST FIRST SECURITY DEPARTMENT
 NAME NAME NUMBER DEPT NAME

 CROCI JUDY 577-16-2985 914 ENGINEERING
 EPERT LINDA 228-46-5157 918 DATA PROCESSING
 GRECO LESLIE 388-18-6119 914 ENGINEERING
 GREEN BRENDA 208-28-2315 911 MARKETING
 ISAAC RUTH 418-46-1872 911 MARKETING
 KELLY KEITH 231-68-9995 940 PRINTING
 LACH LORRIE 215-36-5852 923 MAILROOM
 MALLOW TERRY 477-44-4948 942 *NO TABLE ENTRY
 MILLER JOAN 140-32-0779 920 RECEIVING
 NORIDGE DEBBIE 578-54-3178 944 *NO TABLE ENTRY
 OSMON SAMUEL 269-24-7428 935 RECEIVING
 PHILPS SUE 090-22-9192 940 PRINTING
 REYNOLDS WILLIAM 061-30-8680 911 MARKETING
 ROGERS PAT 579-50-4170 924 PERSONNEL
 SMOTH CINDY 578-38-7587 911 MARKETING
 STRIDE ANN 467-56-4149 911 MARKETING
 THOMPSON JANICE 577-09-1160 923 MAILROOM
 WEST KATHY 570-10-5594 940 PRINTING
 YOUNG JANE 118-34-8805 911 MARKETING

Examples E–35

Basic Examples

MM/DD/YY CENTRAL REGION EMPLOYEES BY DEPARTMENT PAGE 1

 NUMBER
 DEPARTMENT LAST FIRST OF
 NAME BRANCH NAME NAME EMPLOYEES

 *NO TABLE ENTRY 04 MALLOW TERRY
 03 NORIDGE DEBBIE
 2

 DATA PROCESSING 03 EPERT LINDA
 1

 ENGINEERING 04 CROCI JUDY
 02 GRECO LESLIE
 2

 MAILROOM 02 LACH LORRIE
 02 THOMPSON JANICE
 2

 MARKETING 04 GREEN BRENDA
 02 ISAAC RUTH
 02 REYNOLDS WILLIAM
 02 SMOTH CINDY
 03 STRIDE ANN
 01 YOUNG JANE
 6

 PERSONNEL 03 ROGERS PAT
 1

 PRINTING 01 KELLY KEITH
 01 PHILPS SUE
 01 WEST KATHY
 3

 RECEIVING 03 MILLER JOAN
 03 OSMON SAMUEL
 2

 19

MM/DD/YY CENTRAL REGION MISSING DEPARTMENT DESCRIPTIONS PAGE 1

 MISSING NUMBER
 DEPARTMENT OF
 CODES EMPLOYEES

 942 1
 944 1

E–36 Reference Guide

Basic Examples

Example 11: Inventory Report by City

An inventory master file is available for our use. This file contains information
on a diverse inventory. The Material Procurement Department requested an
inventory report, ordered by the city in which the parts are located. The groups
by location need to be separated by a blank line, but no totals by city are desired.

The job to perform this request is quite simple; all processing is performed in the
report section. The NOPRINT option on the CONTROL statement is used to
suppress printing the summary lines.
 1 *
 2 * EXAMPLE 11
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
44 *
45 JOB
46 PRINT INV-BY-CITY . * SELECT EACH RECORD IN FILE
48 *
49 REPORT INV-BY-CITY LINESIZE 80
50 SEQUENCE LOCATION-CITY PART-NUMBER
51 CONTROL FINAL NOPRINT LOCATION-CITY NOPRINT
52 TITLE 1 'INVENTORY BY CITY ORDERED BY PART NUMBER'
53 LINE 1 LOCATION-CITY PART-NUMBER PART-DESCRIPTION
54 BEFORE-BREAK. PROC
56 DISPLAY . * ADDITIONAL SPACING BETWEEN GROUPS
58 END-PROC

Examples E–37

Basic Examples

MM/DD/YY INVENTORY BY CITY ORDERED BY PART NUMBER PAGE 1

 PART
 CITY NUMBER PART DESCRIPTION

 CHICAGO 000-15-428 BOOKS, SCHOOL COPY
 000-16-490 BAGS, GOLF CLUB

 E MOLIN 000-10-944 PANEL, SOLAR
 000-53-100 REFRIGERATORS, HOUSEHOLD
 000-79-740 BEDS, WOODEN
 000-81-190 DESKS, STEEL
 000-82-150 TABLES, PICNIC

 HAMMOND 000-70-750 CARPETS, FABRIC (20' X 40')

 INDIANP 000-15-980 FAUCETS, BATH TUB
 000-51-260 PIPE, IRON OR STEEL (3" X 96")
 000-60-680 BATTERIES, ELECTRIC DRY CELL
 001-78-200 AIR BRAKES
 001-79-000 AXLE SHAFTS
 001-83-800 BRAKE DRUMS
 001-84-900 CYLINDER SLEEVES
 001-85-400 DRIVE SHAFTS

 KANS CT 000-17-037 SIDING, ALUMINUM (24" X 72")

 MAMMOND 000-19-360 WALLBOARD, FIBERBOARD (48" X 96")

 MEMPHIS 001-84-200 BUMPERS
 001-85-200 DOORS
 001-86-600 FENDERS
 001-88-800 HUBS

 MUSKEGN 000-11-576 MACHINES, CALCULATING
 000-12-268 DRYERS, HAIR
 000-62-270 HUMIDIFIERS, PORTABLE

 ST PAUL 000-12-440 MOWERS, LAWN
 000-13-325 SAWS, CHAIN

E–38 Reference Guide

Basic Examples

Example 12: Expanded Inventory Report

After reviewing the previous report, the Materials Department decided they
want an expanded report that includes the quantity of each item at last
inventory, the selling price, and the extended total dollar value of each item.

The items must be grouped by city and must include a total for each city and a
grand total. In addition, Materials wants a summary report that lists the total
dollar value of the parts located in each city and what percentage of the total
inventory value is represented by the local totals.

Both reports are produced with only one pass of the inventory master file. The
first report is similar to the previous example, without the parts descriptions,
and with added dollar values. The second report requests the SUMMARY
option, which prints only summary total lines - no detail lines are printed. The
percentages are calculated in the BEFORE-BREAK procedure, using the total of
the extended values generated in the JOB activity.
 1 *
 2 * EXAMPLE 12
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
44 *
45 ITEM-EXT-VALUE W 6 P 2 HEADING('EXTENDED' 'VALUE')
46 TOTAL-EXT-VALUE S 7 P 2
47 PERCENT W 3 P 2 HEADING('PERCENT OF' 'TOTAL VALUE')
48 JOB
49 * CALC EXTENDED ITEM VALUE AND TOTAL OF ITEM VALUES
50 *
51 ITEM-EXT-VALUE = ITEM-SELLING-PRICE * ITEM-LAST-INVENTORY-QUANTITY
52 TOTAL-EXT-VALUE = TOTAL-EXT-VALUE + ITEM-EXT-VALUE
53 *
54 PRINT INV-BY-CITY . * SELECT EACH RECORD IN FILE
56 PRINT SMY-BY-CITY
57 *
58 REPORT INV-BY-CITY SPREAD LINESIZE 80
59 SEQUENCE LOCATION-CITY PART-NUMBER
60 CONTROL LOCATION-CITY
61 TITLE 1 'INVENTORY BY CITY ORDERED BY PART NUMBER'
62 LINE 1 LOCATION-CITY PART-NUMBER -
 ITEM-LAST-INVENTORY-QUANTITY ITEM-SELLING-PRICE -
 ITEM-EXT-VALUE
63 *
64 REPORT SMY-BY-CITY SUMMARY LINESIZE 80
65 SEQUENCE LOCATION-CITY
66 CONTROL LOCATION-CITY
67 TITLE 1 'INVENTORY VALUE SUMMARY BY CITY'
68 LINE 1 LOCATION-CITY ITEM-EXT-VALUE PERCENT
69 BEFORE-BREAK. PROC
71 PERCENT = ITEM-EXT-VALUE * 100 / TOTAL-EXT-VALUE + .005
72 END-PROC

Examples E–39

Basic Examples

MM/DD/YY INVENTORY BY CITY ORDERED BY PART NUMBER PAGE 1

E–40 Reference Guide

 80,833 4,443.52 3,122,762.70

 LAST SELLING
 PART INVENTORY PRICE EXTENDED
 CITY NUMBER QUANTITY (DOLLARS) VALUE

 CHICAGO 000-15-428 41,353 12.95 535,521.35
 000-16-490 238 49.95 11,888.10
 CHICAGO 41,591 62.90 547,409.45

 E MOLIN 000-10-944 854 54.99 46,961.46
 000-53-100 181 879.95 159,270.95
 000-79-740 81 870.00 70,470.00
 000-81-190 35 389.95 13,648.25
 000-82-150 134 199.89 26,785.26
 E MOLIN 1,285 2,394.78 317,135.92

 HAMMOND 000-70-750 358 425.00 152,150.00
 HAMMOND 358 425.00 152,150.00

 INDIANP 000-15-980 3,150 14.29 45,013.50
 000-51-260 14,389 15.25 219,432.25
 000-60-680 654 54.90 35,904.60
 001-78-200 385 59.88 23,053.80
 001-79-000 385 59.88 23,053.80
 001-83-800 439 43.59 19,136.01
 001-84-900 86 31.59 2,716.74
 001-85-400 109 81.45 8,878.05
 INDIANP 19,597 360.83 377,188.75

 KANS CT 000-17-037 2,218 8.99 19,939.82
 KANS CT 2,218 8.99 19,939.82

 MAMMOND 000-19-360 2,810 18.95 53,249.50
 MAMMOND 2,810 18.95 53,249.50

MM/DD/YY INVENTORY BY CITY ORDERED BY PART NUMBER PAGE 2

 LAST SELLING
 PART INVENTORY PRICE EXTENDED
 CITY NUMBER QUANTITY (DOLLARS) VALUE

 MEMPHIS 001-84-200 653 99.88 65,221.64
 001-85-200 2,210 195.50 432,055.00
 001-86-600 3,403 159.88 544,071.64
 001-88-800 3,952 55.95 221,114.40
 MEMPHIS 10,218 511.21 1,262,462.68

 MUSKEGN 000-11-576 88 119.66 10,530.08
 000-12-268 805 38.88 31,298.40
 000-62-270 245 98.97 24,247.65
 MUSKEGN 1,138 257.51 66,076.13

 ST PAUL 000-12-440 819 243.69 199,582.11
 000-13-325 799 159.66 127,568.34
 ST PAUL 1,618 403.35 327,150.45

Basic Examples

--
MM/DD/YY INVENTORY VALUE SUMMARY BY CITY PAGE 1

 EXTENDED PERCENT OF
 CITY VALUE TOTAL VALUE

 CHICAGO 547,409.45 17.53
 E MOLIN 317,135.92 10.16
 HAMMOND 152,150.00 4.87
 INDIANP 377,188.75 12.08
 KANS CT 19,939.82 .64
 MAMMOND 53,249.50 1.71
 MEMPHIS 1,262,462.68 40.43
 MUSKEGN 66,076.13 2.12
 ST PAUL 327,150.45 10.48
 3,122,762.70 100.00

Examples E–41

Basic Examples

Example 13: Error Correction

After reviewing the Inventory by City report in Example 12, an error has been
detected in the Inventory Master File. The location for part number 000-19-360 is
currently MAMMOND instead of the correct city HAMMOND. A CA-Easytrieve
Plus job can correct it easily.

The required job reads the existing file, finds the record in error, makes the
correction, generates an audit trail to reflect the change, and outputs an updated
master file. All of the records in the updated file are identical to the current file,
except the record for part number 000-19-360.
 1 *
 2 * EXAMPLE 13
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
44 UPDATE-STATUS W 6 A
45 *
46 FILE NEWMSTR FB(200 3000)
47 *
48 JOB
49 IF PART-NUMBER = 00019360 . * SCAN FOR THE RECORD IN ERROR
51 UPDATE-STATUS = 'BEFORE' . * INDICATE BEFORE UPDATE
53 PRINT AUDIT-TRAIL . * OUTPUT AUDIT TRAIL BEFORE UPDATE
55 LOCATION-CITY = 'HAMMOND' . * MODIFY RECORD
57 UPDATE-STATUS = 'AFTER' . * INDICATE AFTER UPDATE
59 PRINT AUDIT-TRAIL . * OUTPUT AUDIT TRAIL AFTER UPDATE
61 END-IF
62 *
63 PUT NEWMSTR FROM INVMSTR . * OUTPUT UPDATED FILE
65 *
66 REPORT AUDIT-TRAIL LINESIZE 80
67 TITLE 1 'INVENTORY MASTER FILE UPDATE -- AUDIT TRAIL'
68 LINE 1 PART-NUMBER LOCATION-CITY UPDATE-STATUS

MM/DD/YY INVENTORY MASTER FILE UPDATE -- AUDIT TRAIL PAGE 1

 PART
 NUMBER CITY UPDATE-STATUS

 000-19-360 MAMMOND BEFORE
 000-19-360 HAMMOND AFTER

E–42 Reference Guide

Basic Examples

Example 14: Inventory Reduction

A new accountant for the company wishes to reduce the inventory of truck parts
(commodity group 19720) by 15 percent. She thinks that this can save a
substantial amount of money (since the interest rate is so high) and, therefore,
requests a report that indicates how much could be saved. The report is
produced by the following steps:

1. Select all items in commodity group 19720.

2. Determine the maximum quantity of inventory reduction that does not
reduce the stock below 120 percent of the reorder point.

3. Calculate the savings, both for parts value and monthly interest cost.

4. Print a report that provides this information, ordered by decreasing savings.

Examples E–43

Basic Examples

 1 *
 2 * EXAMPLE 14
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
44 *
45 MIN-STOCK-LEVEL W 4 P 0
46 STOCK-REDUCTION-QUANT W 4 P 0
47 PROPOSED-STOCK-QUANT W 4 P 0 -
 HEADING('PROPOSED' 'STOCK' 'QUANTITY')
48 STOCK-VALUE-SAVINGS W 5 P 2 HEADING('STOCK VALUE' 'SAVINGS')
49 STOCK-INT-SAVINGS W 5 P 2 HEADING('STOCK INTEREST' 'SAVINGS')
50 *
51 JOB
52 IF ITEM-MFGD-COMMODITY-GROUP NE 19720 . * REJECT UNWANTED RECDS
54 GOTO JOB
55 END-IF
56 MIN-STOCK-LEVEL = 1.2 * ITEM-REORDER-POINT + .5
57 IF ITEM-LAST-INVENTORY-QUANTITY LE MIN-STOCK-LEVEL
58 STOCK-REDUCTION-QUANT = 0 . * NO REDUCTION IF ALREADY AT MIN
60 PROPOSED-STOCK-QUANT = ITEM-LAST-INVENTORY-QUANTITY
61 PERFORM REDUCTION-REPORT
62 GOTO JOB
63 END-IF
64 *
65 STOCK-REDUCTION-QUANT = .15 * ITEM-LAST-INVENTORY-QUANTITY
66 PROPOSED-STOCK-QUANT = -
 ITEM-LAST-INVENTORY-QUANTITY - STOCK-REDUCTION-QUANT
67 IF PROPOSED-STOCK-QUANT LT MIN-STOCK-LEVEL
68 PROPOSED-STOCK-QUANT = MIN-STOCK-LEVEL
69 STOCK-REDUCTION-QUANT = ITEM-LAST-INVENTORY-QUANTITY -
 - PROPOSED-STOCK-QUANT
70 END-IF
71 PERFORM REDUCTION-REPORT
72 *
73 REDUCTION-REPORT. PROC
75 STOCK-VALUE-SAVINGS = STOCK-REDUCTION-QUANT * LAST-PURCHASE-PRICE
76 STOCK-INT-SAVINGS = .015 * STOCK-VALUE-SAVINGS
77 PRINT SAVINGS-REPORT
78 END-PROC
79 *
80 REPORT SAVINGS-REPORT SKIP 1 LINESIZE 80
81 SEQUENCE STOCK-VALUE-SAVINGS D
82 CONTROL
83 TITLE 1 'STOCK REDUCTION ANALYSIS FOR COMMODITY GROUP 19720'
84 LINE 1 PART-NUMBER ITEM-LAST-INVENTORY-QUANTITY -
 PROPOSED-STOCK-QUANT -
 STOCK-VALUE-SAVINGS STOCK-INT-SAVINGS
85 LINE 2 PART-DESCRIPTION

E–44 Reference Guide

Basic Examples

MM/DD/YY STOCK REDUCTION ANALYSIS FOR COMMODITY GROUP 19720 PAGE 1

 LAST PROPOSED
 PART INVENTORY STOCK STOCK VALUE STOCK INTEREST
 NUMBER QUANTITY QUANTITY SAVINGS SAVINGS

001-86-600 3,403 2,893 40,774.50 611.61
FENDERS

001-85-200 2,210 1,879 33,060.28 495.90
DOORS

001-88-800 3,952 3,360 16,155.68 242.33
HUBS

001-84-200 653 556 4,413.50 66.20
BUMPERS

001-78-200 385 328 1,707.15 25.60
AIR BRAKES

001-79-000 385 328 1,707.15 25.60
AXLE SHAFTS

001-83-800 439 374 1,462.50 21.93
BRAKE DRUMS

001-85-400 109 93 640.00 9.60
DRIVE SHAFTS

001-84-900 86 86 .00 .00
CYLINDER SLEEVES

 11,622 9,897 99,920.76 1,498.77

Examples E–45

Basic Examples

Example 15: Inventory File Update

An inventory has been taken of the truck parts (commodity group 19720), and it
is necessary to update the master file with the new quantities.

CA-Easytrieve Plus provides a variety of ways to update files. One method is the
technique used in Example 13, but this requires an IF statement for each record
to be modified and is too cumbersome for a large number of records. Another
method is to use the multi-file capabilities, which are discussed in the
“Advanced Techniques” chapter of the Application Guide.

An excellent technique to update a moderate number of records is to use a table
file. In this example, an instream table is defined. The argument equals the part
number and the description contains the new quantity and date of inventory. As
data is read from the master file, a check is made against the table for a match. If
no match is found, the record is written unmodified. If a match occurs, the
quantity and inventory date are changed, the updated record is written, and an
audit report is generated. In addition, if the inventory for a particular item has
been depleted by more than 20 percent of its original value, a management
report is generated.

E–46 Reference Guide

Basic Examples

 1 *
 2 * EXAMPLE 15
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
44 *
45 TABLE-DESC W 20 A
46 NEW-DATE TABLE-DESC 6 N 0 MASK 'Z9/99/99' -
 HEADING('NEW' 'INVENTORY' 'DATE')
47 NEW-QUANT TABLE-DESC +7 5 N 0 -
 HEADING('NEW' 'INVENTORY' 'QUANTITY')
48 PERCENT-DROP W 3 P 2 HEADING('PERCENT' 'DROP IN' 'INVENTORY')
49 *
50 FILE NEWMSTR FB(200 3000)
51 *
52 FILE UPDTBL TABLE INSTREAM
53 ARG 1 8 N. DESC 10 20 A
55 00178200 103181 00312
 00179000 101581 00434
 00183800 110581 00311
 00184200 111581 00472
 00184900 102281 00081
 00185200 092781 02103
 00185400 111081 00073
 00186600 111981 03401
 00188800 110681 04027
 ENDTABLE
56 *
57 JOB
58 SEARCH UPDTBL WITH PART-NUMBER GIVING TABLE-DESC
59 *
60 IF UPDTBL . * IF MATCH FOUND
62 PRINT AUDIT-TRAIL . * OUTPUT AUDIT TRAIL
64 PERFORM EXCESS-CHECK . * CHECK FOR LARGE QUANT VARIATION
66 ITEM-LAST-INVENTORY-DATE = NEW-DATE . * UPDATE DATE AND
68 ITEM-LAST-INVENTORY-QUANTITY = NEW-QUANT . * QUANTITY
70 END-IF
71 *
72 PUT NEWMSTR FROM INVMSTR . * OUTPUT UPDATED FILE
74 *
75 EXCESS-CHECK. PROC
77 IF NEW-QUANT < .8 * ITEM-LAST-INVENTORY-QUANTITY
78 PERCENT-DROP = 100 -
 - (NEW-QUANT * 100 / ITEM-LAST-INVENTORY-QUANTITY)
79 PRINT MGMT-WARNING . * IF UNUSUAL DROP IN QUANTITY
81 END-IF . * INFORM THE MANAGEMENT
83 END-PROC
84 *
85 REPORT AUDIT-TRAIL LINESIZE 80
86 TITLE 1 'INVENTORY MASTER FILE UPDATE -- AUDIT TRAIL'
87 LINE 1 PART-NUMBER ITEM-LAST-INVENTORY-DATE -
 ITEM-LAST-INVENTORY-QUANTITY -
 NEW-DATE NEW-QUANT
88 *
89 REPORT MGMT-WARNING LINESIZE 80
90 TITLE 1 'INVENTORY WITH A 20% OR GREATER DROP IN QUANTITY'
91 LINE 1 PART-NUMBER LOCATION-CITY -
 ITEM-LAST-INVENTORY-QUANTITY -
 NEW-QUANT PERCENT-DROP

Examples E–47

Basic Examples

MM/DD/YY INVENTORY MASTER FILE UPDATE -- AUDIT TRAIL PAGE 1

 LAST LAST NEW NEW
 PART INVENTORY INVENTORY INVENTORY INVENTORY
 NUMBER DATE QUANTITY DATE QUANTITY

 001-84-900 9/30/81 86 10/22/81 81
 001-85-200 8/31/81 2,210 9/27/81 2,103
 001-85-400 8/31/81 109 11/10/81 73
 001-86-600 10/30/81 3,403 11/19/81 3,401
 001-88-800 10/30/81 3,952 11/06/81 4,027
 001-79-000 9/30/81 385 10/15/81 434
 001-83-800 9/30/81 439 11/05/81 311
 001-84-200 9/30/81 653 11/15/81 472
 001-78-200 9/30/81 385 10/31/81 312

MM/DD/YY INVENTORY WITH A 20% OR GREATER DROP IN QUANTITY PAGE 1

 LAST NEW PERCENT
 PART INVENTORY INVENTORY DROP IN
 NUMBER CITY QUANTITY QUANTITY INVENTORY

 001-85-400 INDIANP 109 73 33.02
 001-83-800 INDIANP 439 311 29.15
 001-84-200 MEMPHIS 653 472 27.71

E–48 Reference Guide

Basic Examples

Example 16: Reorder Notification Report

The Materials Department needs a program that automatically reorders parts
when quantities get below a specified level. The program should provide three
reports:

1. A master activity report for the materials department,

2. A set of purchase orders to initiate the ordering, and

3. A receiving report for each warehouse that receives the ordered goods.

An effort is being made to build up stock, so an item should be reordered when
the current quantity is at, or below, 400 percent of the reorder point. The number
of items to be ordered is equal to the LAST-PURCHASE-QUANTITY. If an item
is below the reorder point, the order quantity should be increased 20 percent
over the last quantity. This is an update job since the last purchase date and
quantity are modified and a new master is written.

As complicated as this job sounds, the basic features of CA-Easytrieve Plus still
provide for a simple program. Each record in the inventory master is read. If the
item does not require reordering, it is output as is to the new master file. If a
reorder is required, the desired quantity is established, the LAST-PURCHASE
data is updated, an extended total for the item is calculated, the reports are
written, and the updated master file record is output.

The three reports generated from this program demonstrate its power and
flexibility. The first report is a simple control report that lists all items ordered.
Notice the use of the SUM statement to explicitly specify which fields to total at
control breaks. It does not make sense to total the purchase quantity or estimated
item price.

The second report demonstrates how a form with variable information is
generated. All data that is constant on a page is defined in a long TITLE. Variable
information is defined via LINE statements. Final totals are suppressed. A new
page and renumbering are requested at each vendor control break. Note the use
of control variables in the title lines.

The final report is again a simple control report, but controlled on warehouse
location, instead of vendor. Note again the use of the control variable on the title
line.

Examples E–49

Basic Examples

 1 *

E–50 Reference Guide

 EXTENDED-TOTAL
121 LINE 2 PART-DESCRIPTION
122 BEFORE-BREAK. PROC
124 PO-SEQ = PO-SEQ + 1 . * INCREMENT PO NUMBER
126 END-PROC

 2 * EXAMPLE 16
 3 *
 4 FILE INVMSTR FB(200 3000)
 5 %INVMSTR
 44 *
 45 PO# S 10 N HEADING('PURCHASE' 'ORDER' 'NUMBER')
 46 PO-DATE PO# 6 N
 47 PO-SEQ PO# +6 4 N
 48 EXTENDED-TOTAL W 5 P 2 HEADING('EXTENDED' 'TOTAL')
 49 *
 50 FILE NEWMSTR FB(200 3000)
 51 *
 52 JOB
 53 *
 54 IF ITEM-LAST-INVENTORY-QUANTITY > 4.0 * ITEM-REORDER-POINT
 55 PUT NEWMSTR FROM INVMSTR . * OUTPUT NEW MASTER RECORD IF NO
 57 GOTO JOB . * CHANGE, AND GET NEXT RECORD
 59 END-IF
 60 *
 61 IF ITEM-LAST-INVENTORY-QUANTITY < ITEM-REORDER-POINT
 62 LAST-PURCHASE-QUANTITY = 1.2 * LAST-PURCHASE-QUANTITY
 63 END-IF
 64 *
 65 %GETDATE PO-DATE . * GET DATE IN MMDDYY FORMAT
 84 LAST-PURCHASE-DATE = PO-DATE . * SET NEW PURCHASE DATE
 86 EXTENDED-TOTAL = LAST-PURCHASE-QUANTITY * LAST-PURCHASE-PRICE
 87 *
 88 PRINT ACTIVITY-REPORT . * PRINT MASTER ACTIVITY REPORT
 90 PRINT PURCHASE-ORDERS . * PRINT PURCHASE ORDERS
 92 PRINT RECEIVING-REPORTS . * PRINT RECEIVING REPORTS
 94 *
 95 PUT NEWMSTR FROM INVMSTR . * OUTPUT UPDATED FILE
 97 *
 98 *
 99 REPORT ACTIVITY-REPORT SKIP 1 SUMCTL TAG LINESIZE 80
100 SEQUENCE VENDOR-NUMBER PART-NUMBER
101 CONTROL VENDOR-NUMBER
102 SUM EXTENDED-TOTAL
103 TITLE 1 'PURCHASE ORDER ACTIVITY BY VENDOR'
104 HEADING LAST-PURCHASE-QUANTITY 'QUANTITY'
105 HEADING LAST-PURCHASE-PRICE ('ESTIMATED' 'PRICE')
106 LINE 1 VENDOR-NUMBER PART-NUMBER -
 LAST-PURCHASE-QUANTITY LAST-PURCHASE-PRICE -
 EXTENDED-TOTAL
107 LINE 2 VENDOR-LOCATION-CITY -2 VENDOR-LOCATION-STATE -
 POS 2 PART-DESCRIPTION
108 *
109 REPORT PURCHASE-ORDERS NOADJUST SKIP 1 SUMCTL NONE LINESIZE 80
110 SEQUENCE VENDOR-NUMBER PART-NUMBER
111 CONTROL FINAL NOPRINT VENDOR-NUMBER RENUM
112 SUM EXTENDED-TOTAL
113 TITLE 1 COL 25 'ABC COMPANY'
114 TITLE 2 COL 23 'PURCHASE ORDER'
115 TITLE 4 COL 1 'PO#' PO#
116 TITLE 6 COL 1 'VENDOR' VENDOR-NUMBER
117 TITLE 7 COL 10 VENDOR-LOCATION-CITY -2 VENDOR-LOCATION-STATE
118 HEADING LAST-PURCHASE-QUANTITY 'QUANTITY'
119 HEADING LAST-PURCHASE-PRICE ('ESTIMATED' 'PRICE')
120 LINE 1 PART-NUMBER +10 -
 LAST-PURCHASE-QUANTITY LAST-PURCHASE-PRICE -

Basic Examples

127 *
128 REPORT RECEIVING-REPORTS LINESIZE 80
129 SEQUENCE LOCATION-CITY VENDOR-NUMBER PART-NUMBER
130 CONTROL FINAL NOPRINT LOCATION-CITY RENUM NOPRINT
131 TITLE 1 'RECEIVING REPORT FOR' LOCATION-CITY 'WAREHOUSE'
132 HEADING LAST-PURCHASE-QUANTITY 'QUANTITY'
133 LINE 1 VENDOR-NUMBER PART-NUMBER LAST-PURCHASE-QUANTITY
134 *

 00-00-9-128 001-84-900 600 16.29 9,774.00
 BAY CIT MI CYLINDER SLEEVES

 VENDOR-NUMBER TOTAL 9,774.00

 00-03-4-091 001-84-200 1,000 45.50 45,500.00
 PHIL PA BUMPERS

 VENDOR-NUMBER TOTAL 45,500.00

 10-03-0-443 000-81-190 360 195.69 70,448.40
 LVILLE KY DESKS, STEEL

 VENDOR-NUMBER TOTAL 70,448.40

MM/DD/YY PURCHASE ORDER ACTIVITY BY VENDOR PAGE 1

 VENDOR PART ESTIMATED EXTENDED
 NUMBER NUMBER QUANTITY PRICE TOTAL

 00-00-0-562 001-78-200 600 29.95 17,970.00
 MILW WI AIR BRAKES

 001-79-000 600 29.95 17,970.00
 MILW WI AXLE SHAFTS

 001-85-400 300 40.00 12,000.00
 MILE WI DRIVE SHAFTS

 VENDOR-NUMBER TOTAL 47,940.00

Examples E–51

Basic Examples

MM/DD/YY PURCHASE ORDER ACTIVITY BY VENDOR PAGE 2

 VENDOR PART ESTIMATED EXTENDED
 NUMBER NUMBER QUANTITY PRICE TOTAL

 34-89-7-210 000-53-100 2 450.67 901.34
 DES MOI IA REFRIGERATORS, HOUSEHOLD

 VENDOR-NUMBER TOTAL 901.34

 54-96-3-251 000-11-576 1,008 59.88 60,359.04
 HOUST TX MACHINES, CALCULATING

 VENDOR-NUMBER TOTAL 60,359.04

 65-49-8-318 000-82-150 250 95.80 23,950.00
 TUCS AZ TABLES, PICNIC

 VENDOR-NUMBER TOTAL 23,950.00

 FINAL TOTAL 258,872.78

MM/DD/YY ABC COMPANY PAGE 1
 PURCHASE ORDER

PO# 1120810000

VENDOR 00-00-0-562
 MILW WI

 PART ESTIMATED EXTENDED
 NUMBER QUANTITY PRICE TOTAL

001-78-200 600 29.95 17,970.00
AIR BRAKES

001-79-000 600 29.95 17,970.00
AXLE SHAFTS

001-85-400 300 40.00 12,000.00
DRIVE SHAFTS

 47,940.00

E–52 Reference Guide

Basic Examples

MM/DD/YY ABC COMPANY PAGE 1
 PURCHASE ORDER

PO# 1120810001

VENDOR 00-00-9-128
 BAY CIT MI

 PART ESTIMATED EXTENDED
 NUMBER QUANTITY PRICE TOTAL

001-84-900 600 16.29 9,774.00
CYLINDER SLEEVES

 9,774.00

MM/DD/YY ABC COMPANY PAGE 1
 PURCHASE ORDER

PO# 1120810002

VENDOR 00-03-4-091
 PHIL PA

 PART ESTIMATED EXTENDED
 NUMBER QUANTITY PRICE TOTAL

001-84-200 1,000 45.50 45,500.00
BUMPERS

 45,500.00

MM/DD/YY ABC COMPANY PAGE 1
 PURCHASE ORDER

PO# 1120810003

VENDOR 10-03-0-443
 LVILLE KY

 PART ESTIMATED EXTENDED
 NUMBER QUANTITY PRICE TOTAL

000-81-190 360 195.69 70,448.40
DESKS, STEEL

 70,448.40

Examples E–53

Basic Examples

MM/DD/YY RECEIVING REPORT FOR E MOLIN WAREHOUSE PAGE 1

 VENDOR PART
 NUMBER NUMBER QUANTITY

 10-03-0-443 000-81-190 360
 34-89-7-210 000-53-100 2
 65-49-8-318 000-82-150 250

MM/DD/YY RECEIVING REPORT FOR INDIANP WAREHOUSE PAGE 1

 VENDOR PART
 NUMBER NUMBER QUANTITY

 00-00-0-562 001-78-200 600
 00-00-0-562 001-79-000 600
 00-00-0-562 001-85-400 300
 00-00-9-128 001-84-900 600

MM/DD/YY RECEIVING REPORT FOR MEMPHIS WAREHOUSE PAGE 1

 VENDOR PART
 NUMBER NUMBER QUANTITY

 00-03-4-091 001-84-200 1,000

MM/DD/YY RECEIVING REPORT FOR MUSKEGN WAREHOUSE PAGE 1

 VENDOR PART
 NUMBER NUMBER QUANTITY

 54-96-3-251 000-11-576 1,008

E–54 Reference Guide

CA-Easytrieve/Earl

CA-Easytrieve/Earl
The CA-Easytrieve/Earl file exit program is an assembly program that translates
the CA-Easytrieve exit parameter list to the CA-Earl parameter list and invokes a
specific CA-Earl program.

Syntax
FILE filename WORKAREA (lrecl) +
 EXIT ('EARLEXIT' USING (COMAREA, exitname, filename, +
 PARM-REGISTER))

Parameters

filename

The DD name of the data file that the Exit reads.

lrecl

The record length of the file.

EARLEXIT

The name of the CA-Easytrieve/EARL file exit.

COMAREA

An 80-byte working storage field used as a communication area for the specific
CA-Earl exit being used. COMAREA must be defined in the CA-Easytrieve Plus
program as an 80-byte alpha field.

exitname

The CA-Earl exit supplied by a specific Computer Associates product.

PARM-REGISTER

CA-Easytrieve predefined field that contains the value of register 1 on entry to
the CA-Easytrieve Plus program.

Examples E–55

CA-Easytrieve/Earl

Usage Notes

COMAREA must be passed to the exit as an 80-byte alpha field. It is redefined
into two parts. The first four bytes of COMAREA is an integer that contains the
CA-Earl return code. Its values are:

■ -1—End of File

■ -2—Record not found

■ 0—User cancel.

Redefine the remaining 76 bytes of COMAREA per the requirements of the
specific exit. This area can be used to pass additional parameters required by the
Exit or for user messages.

Please refer to the appropriate product documentation for information on
supplied CA-Earl exits.

Sample CA-Easytrieve/Earl Exit
* FILE DEFINITION
* FILE NAME: AIRPORTS
* EARL EXIT NAME: EARLGET
* RECORD LENGTH: 48
FILE AIRPORTS WORKAREA 48 +
EXIT (EARLEXIT USING (COMAREA, 'EARLGET ', 'AIRPORTS ', +
 PARM-REGISTER)) F (48)
 NAME 1 18 A
 CITY 20 16 A
 COUNTRY 37 3 A
 PASS 41 8 A
DEFINE COMAREA W 80 A
DEFINE EARLCOM-FLAG COMAREA 4 B
DEFINE EARLCOM-MSG COMAREA +4 76 A
JOB INPUT AIRPORTS
 PRINT AIRPORTS
 REPORT AIRPORTS
 CONTROL
 LINE 1 +
 NAME +
 CITY +
 COUNTRY +
 PASS

E–56 Reference Guide

JCL Examples for the OS/390 and z/OS Operating System

JCL Examples for the OS/390 and z/OS Operating System
This section describes all files and JCL required to execute CA-Easytrieve Plus in
the OS/390 and z/OS operating system.

■ Files prefixed by SYS, KJ, and SORT are operating system-related files.

■ Files prefixed by EZT are CA-Easytrieve Plus related.

■ Files prefixed by PAN are macro file related.

The EZT and PAN prefixes can be respecified by options WKDSPF and
MACDDN.

SYSIN

(required except for execution-only operation)

Filename Description

Purpose Source statement input plus optional data input

Characteristics Fixed length, 80-bytes

Considerations Optional data input follows the END statement which
delimits the source program input.

SYSPRINT

(required)

Filename Description

Purpose Compiler and default report output

Characteristics Fixed length, 121 to 204 bytes.

Examples E–57

JCL Examples for the OS/390 and z/OS Operating System

PANDD1

(optional)

Filename Description

Purpose Provide access to CA-Easytrieve Plus macros stored in a
CA-Panvalet library. (If you are using a PDS or VSAM
macro library, use filename PANDD.)

MASTER1

(optional)

Filename Description

Purpose Provide access to CA-Easytrieve Plus macros stored in a
CA-Librarian library.

EZTVFM

(optional)

Filename Description

Purpose Work file space for the CA-Easytrieve Plus Virtual File
Manager

Characteristics DASD file, fixed length, record length computed by VFM.
Multiple extents allowed.

Considerations VFM is used for work files during compilation, by report
spool files, and by user VIRTUAL files during execution.

VFM attempts to buffer all data in storage. If there is insufficient storage to
buffer all of the data, an EZTVFM file is required.

Note: The EZTVFM file must not span volumes.

E–58 Reference Guide

JCL Examples for the OS/390 and z/OS Operating System

You can define an EZTVFM file simply by specifying UNIT and SPACE
information on a DD statement. The amount of space required is dependent on
the amount of data processed by the VFM during execution. VFM maintains a 90
percent utilization of disk space; if the total number of bytes of data to be
maintained by VFM at any one time is known, the formula for cylinder
allocation of space is:
 bytes of data

 0.9 * track-length * trks/cyl

SORTWKnn

(optional)

Filename Description

Purpose Provides sort work space for the SORT program

Considerations Work files are required only for those systems that do not
provide dynamic allocation. If the number of sort work
units supplied on the SORT or PARM statement or in the
Options Table is between 1 and 31, the DYNALLOC
parameter of the OS/390 and z/OS SORT statement
indicates dynamic allocation of work data sets.

SYSLIN

(optional)

Filename Description

Purpose Output file for CA-Easytrieve Plus object modules; used as
input to the linkage editor

Characteristics Fixed blocked 80/800.

Examples E–59

JCL Examples for the OS/390 and z/OS Operating System

SYSOUT

(optional)

Filename Description

Purpose Sort message output

Characteristics As required by the sort utility. Normally assigned as
SYSOUT=A.

STEPLIB

(optional)

Filename Description

Purpose Supplies load modules required by CA-Easytrieve Plus and
its options not available elsewhere.

sysctl

(IDMS CV)

Filename Description

Purpose Supplies control information to CA-IDMS central version.

sysjrnl

(IDMS local)

Filename Description

Purpose Identifies the CA-IDMS journal file. The journal is usually a
tape file.

E–60 Reference Guide

JCL Examples for the OS/390 and z/OS Operating System

sysidms

(IDMS)

Filename Description

Purpose Identifies the CA-IDMS (release 12.0 and above)
environment parameters.

idmsdb

(IDMS local)

Filename Description

Purpose Identifies the areas comprising the database.

idmsdict

(IDMS local)

Filename Description

Purpose Identifies the dictionary to be used for library definitions.

SYSSNAP

(optional)

Filename Description

Purpose Provides error analysis printout

Characteristics Variable blocked 125/882; normally, assigned to
SYSOUT=A.

Examples E–61

JCL Examples for the OS/390 and z/OS Operating System

SYSUDUMP

(optional)

Filename Description

Purpose Abnormal error dump data set

Characteristics Normally, assigned to SYSOUT=A.

userfiles

(optional)

Filename Description

Purpose Provides access to files described by FILE statements

Characteristics As required by coding on the FILE statements.

The following list details of the additional file requirements when using the IBM
Kanji/Chinese Sort/Merge Program Product.

KJSRTBL

(optional - used only with IBM Kanji/Chinese Sort)

Filename Description

Purpose Defines the data sets containing Kanji sort tables

Characteristics Normally, an OS/390 or z/OS PDS containing load module
members

Considerations Libraries are provided and maintained by IBM-supplied
utilities.

E–62 Reference Guide

JCL Examples for the OS/390 and z/OS Operating System

KJSYSOUT

(optional - used only with IBM Kanji/Chinese Sort)

Filename Description

Purpose Kanji/Chinese sort message output

Characteristics As required by the sort utility (normally: RECFM=FBA,
LRECL=121,BLKSIZE=1210). It is normally assigned to
SYSOUT=A.

The following list details the additional requirements when using the FACOM
Kanji Sort/Merge Program Product.

KATTR

(optional - used only with FUJITSU Kanji/Chinese Sort)

Filename Description

Purpose Defines the data sets containing Kanji sort tables

Characteristics Normally, an OS/390 or z/OS PDS containing load module
members

Considerations Libraries are provided and maintained by
FUJITSU-supplied utilities.

JCL Examples: OS/390 and z/OS JCL Systems

The following example illustrates the JCL necessary to compile and go with sort
and external VFM work file.
//jobname JOB accounting.info
//STEPNAME EXEC PGM=EZTPA00,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSSNAP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//userfile DD dd-parms
//SYSIN DD *
 ...CA-Easytrieve Plus source statements...

Examples E–63

JCL Examples for the OS/390 and z/OS Operating System

This example illustrates the JCL necessary to compile and link edit a load
module to be executed later.
//jobname JOB accounting.info
//STEPNAME EXEC PGM=EZTPA00,REGION=512K
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSPRINT DD SYSOUT=A
//SYSLIN DD UNIT=SYSDA,SPACE=(400,(100,50)),DISP=(,PASS),
// DSN=&&SYSLIN
//SYSIN DD *
PARM LINK(TESTPGM)...
 ...CA-Easytrieve Plus source statements
//LKED EXEC PGM=IEWL
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&SYSLIN,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=your.eztp.loadlib,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,5))

The following example illustrates the JCL necessary to execute a previously
compiled and link edited CA-Easytrieve Plus program.
//jobname JOB accounting.info
//STEPNAME EXEC PGM=TESTPGM
//STEPLIB DD ...
//SYSPRINT DD SYSOUT=A
//SYSSNAP DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWKO1 DD UNIT=SYSDA,SPACE=(CYL,1)
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//userfile DD dd-parms
//SYSIN DD * (optional CARD input)

The following procedure can be catalogued and used for executing
CA-Easytrieve Plus with IMS.
//DLIBATCH PROC MBR=TEMPNAME,PSB=,BUF=8,SPIE=0,TEST=0,EXCPVR=0,
// RST=0,PRLD=,SRCH=0,CKPTID=,MON=N,LOGA=0
//G EXEC PGM=DFSRRC00,REGION=512K,
// PARM=(DLI,&MBR,&PSB,&BUF,
// &SPIE&TEST&EXCPVR&RST,&PRLD,&SRCH,&CKPTID,&MON,&LOGA)
//STEPLIB DD DSN=IMSVS.RESLIB,DISP=SHR
// DD DSN=IMSVS.PGMLIB,DISP=SHR
// DD DSN=your.eztp.loadlib,DISP=SHR
//IMS DD DSN=IMSVS.PSBLIB,DISP=SHR
// DD DSN=IMSVS.DBDLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,1)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,1)

When executing CA-Easytrieve Plus programs with both IMS and DB2 for
OS/390 and z/OS statements (if you are running a version of DB2 prior to 1.3),
change the previous JCL statement from:
// PARM=(DLI,&MBR,&PSB,&BUF,

to:

E–64 Reference Guide

// PARM=(BMP,&MBR,&PSB,&BUF,

JCL Examples for the OS/390 and z/OS Operating System

Also, add the IBM DB2 SSPGM library and the Pan/SQL option library to the
STEPLIB statement.

The following JCL executes the previous procedure:
//jobname JOB accounting.info
//EZTPIMS EXEC DLIBATCH,MBR=EZTPA00,PSB=yourpsbname
//PAYFILE DD DISP=SHR,DSN=IMS.DATA.BASE
//PAYFLOW DD DISP=SHR,DSN=IMS.DATA.BASE.OVERFLOW
//SYSIN DD *
 CA-Easytrieve Plus IMS statements follow
 .
 .
 .
/*
//

The following example illustrates the OS/390 and z/OS JCL to execute
CA-Easytrieve Plus with CA-IDMS under central version.
//jobname JOB accounting.info
//stepname EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=cdms.loadlib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//sysctl DD DISP=SHR,DSN=cdms.sysctl
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD *
 ... CA-Easytrieve Plus source statements ...
/*

The following example illustrates the OS/390 and z/OS JCL to execute a
previously compiled and link edited CA-Easytrieve Plus program with
CA-IDMS under central version.
//jobname JOB accounting.info
//stepname EXEC PGM=TESTPGM
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=cdms.loadlib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//sysctl DD DISP=SHR,DSN=cdms.sysctl
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD * (optional CARD input)

Examples E–65

JCL Examples for the OS/390 and z/OS Operating System

The following example illustrates the OS/390 and z/OS JCL to execute
CA-Easytrieve Plus with CA-IDMS under local mode.
//jobname JOB accounting.info
//stepname EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=cdms.loadlib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//sysjrnl DD DISP=(NEW,KEEP),UNIT=TAPE,
// DSN=cdms.tapejrnl
//idmsdict DD DISP=SHR,DSN=cdms.dictdb
//idmsdb DD DISP=SHR,DSN=your.database
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD *
 ... CA-Easytrieve Plus source statements ...
/*

The following example illustrates the OS/390 and z/OS JCL to execute a
previously compiled and link edited CA-Easytrieve Plus program with
CA-IDMS under local mode.
//jobname JOB accounting.info
//stepname EXEC PGM=TESTPGM
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=cdms.loadlib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//sysjrnl DD DISP=(NEW,KEEP),UNIT=TAPE,
// DSN=cdms.tapejrnl
//idmsdict DD DISP=SHR,DSN=cdms.dictdb
//idmsdb DD DISP=SHR,DSN=your.database
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD * (optional CARD input)

The following example illustrates the JCL necessary to execute CA-Easytrieve
Plus with DB2 for OS/390 and z/OS using Dynamic SQL mode.
//jobname JOB accounting.info,USER=userid
//stepname EXEC PGM=EZTPA00
//STEPLIB DD DISP=SHR,DSN=your.eztp.loadlib
// DD DISP=SHR,DSN=your.pansql.loadlib
// DD DISP=SHR,DSN=your.db2.sspgm.lib
//SYSPRINT DD SYSOUT=A
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,1)
//SYSSNAP DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//EZTVFM DD UNIT=SYSDA,SPACE=(4096,(100,100))
//SYSIN DD *
 ... CA-Easytrieve Plus DB2 source statements ...
/*

SSPGM names your IBM DB2 SSPGM library, which contains the programs
DSNHLI and DSNALI.

E–66 Reference Guide

For examples on how to use Static SQL, see the SQL Interface Option Guide.

JCL Examples for the VSE Operating System

Macro Libraries

When including macros in your program, you must have JCL that refers to your
macro libraries. For example, PANDD1 provides access to CA-Easytrieve Plus
macros stored in a CA-Panvalet library. MASTER1 provides access to macros
stored in a CA-Librarian library. If you are using a PDS or VSAM macro library,
use filename PANDD. See the Getting Started, or your system administrator for
details.

JCL Examples for the VSE Operating System
This section describes all files and JCL required for executing CA-Easytrieve Plus
in the VSE operating system.

■ Files prefixed by SYS, KJ, and SORT are operating system-related files.

■ Files prefixed by EZT are CA-Easytrieve Plus related.

■ Files prefixed by PAN are macro file related.

The EZT and PAN prefixes can be respecified by options WKDSPF and
MACDDN.

SYSIPT

(required for compilation only)

Filename Description

Purpose Source statement input plus optional data input

Characteristics Fixed length, 80-bytes

Considerations Optional data input follows the END statement, which
delimits the source program input. The file can be assigned
to any device supported by DTFCP for input.

Examples E–67

JCL Examples for the VSE Operating System

SYSLST

(required)

Filename Description

Purpose Compiler and default report output

Characteristics Fixed length, 121 to 133 bytes

Considerations The file can be assigned to any device supported for output
by DTFCP.

PANDD1

(optional)

Filename Description

Purpose Provides access to CA-Easytrieve Plus macros stored in a
CA-Panvalet library. (If you are using a VSAM macro
library, use filename PANDD or if you are using an SSL
macro library, use a LIBDEF to define the source library to be
searched for macro members.)

MASTER1

(optional)

Filename Description

Purpose Provides access to CA-Easytrieve Plus macros stored in a
CA-Librarian library.

E–68 Reference Guide

JCL Examples for the VSE Operating System

EZTVFM

(optional)

Filename Description

Purpose Work file space for the Virtual File Manager

Characteristics Sequential DASD workfile, fixed length, record length
determined by VFM

Considerations VFM is used for work files during compilation, by report
spool files, and by user VIRTUAL files during execution.

VFM attempts to buffer all data in storage. If there is insufficient storage to
buffer all data, an EZTVFM data set is required.

The EZTVFM data set must be a single extent data set on DASD. The size of the
EZTVFM data set depends on the amount of data to be maintained by the VFM
during execution. VFM maintains at least 90 percent utilization of the disk space.
If the total number of bytes to be maintained by VFM at any one time is known,
the formula for tracks of disk space is:
 bytes of data

 0.9 * track-length

SORTWKn

(optional)

Filename Description

Purpose Provide sort work space for the VSE sort

Characteristics Either DASD or tape files as required by the sort program

Considerations If work files are DA, then this must match the Options
Table NUMWORK specification or be overridden on the
PARM statement.

Examples E–69

JCL Examples for the VSE Operating System

SYSLNK

(optional)

Filename Description

Purpose Output file for CA-Easytrieve Plus object modules; used as
input to the VSE linkage editor

Characteristics Fixed length, 82 bytes

Considerations The file can be assigned to any device supported by DTFCP
for output.

userfiles

(optional)

Filename Description

Purpose Provides access to files described by FILE statements

Characteristics As required by coding on the FILE statements.

CA-IDMS

(CA-IDMS)

Filename Description

Purpose Supplies the required IDMS PHASEs.

sysjrnl

(IDMS local)

Filename Description

Purpose Identifies the IDMS journal file. The journal is usually a tape
file. The file number is given by f.

E–70 Reference Guide

JCL Examples for the VSE Operating System

sysidms

(IDMS)

Filename Description

Purpose Identifies the CA-IDMS (release 12.0 and above)
environment parameters.

idmsdb

(IDMS local)

Filename Description

Purpose Identifies the areas comprising the database.

idmsdict

(IDMS local)

Filename Description

Purpose Identifies the dictionary to be used for library definitions.

UPSI

(optional)

Filename Description

Purpose Supplies variable information to the CA-Easytrieve Plus
program or to IDMS.

Examples E–71

JCL Examples for the VSE Operating System

JCL Examples: VSE JCL Systems

The following example illustrates the JCL necessary to compile and go with sort
and external VFM work file.
* $$ JOB JNM=jobname
// JOB jobname
// DLBL EZTP,'your.eztp.library',0,SD
// EXTENT SYS003,volser,1,0,start,lgth
// ASSGN SYS003,nnn
// LIBDEF PHASE,SEARCH=EZTP.sublib,TEMP
// ASSGN SYS001,...
// ASSGN SYS010,...
// ASSGN SYS008,...
// DLBL SORTWK1,,0,DA
// EXTENT SYS001,volser,,,start,lgth
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// DLBL INREC,,0,SD
// EXTENT SYS008,volser,,,start,lgth
// EXEC EZTPA00,SIZE=512K
 ...CA-Easytrieve Plus source statements...
/*
/&
* $$ EOJ

This example illustrates the JCL necessary to compile and link edit a phase to be
executed later.
* $$ JOB JNM=jobname
// JOB jobname
// DLBL EZTP,'your.eztp.library',0,SD
// EXTENT SYS003,volser,1,0,start,lgth
// ASSGN SYS003,nnn
// LIBDEF PHASE,CATALOG=EZTP.sublib,TEMP
// LIBDEF PHASE,SEARCH=EZTP.sublib,TEMP
// ASSGN SYS010,...
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// OPTION CATAL
// EXEC EZTPA00,SIZE=512K
PARM LINK(TESTPGM)
 ...CA-Easytrieve Plus source statements...
/*
// EXEC LNKEDT
/&
* $$ EOJ

E–72 Reference Guide

JCL Examples for the VSE Operating System

The following example illustrates the JCL necessary to execute a previously
compiled and link edited phase.
* $$ JOB JNM=jobname
// JOB jobname
// DLBL EZTP,'your.eztp.library';0,SD
// EXTENT SYS003,volser,1,0,start,lgth
// ASSGN SYS003,nnn
// LIBDEF PHASE,SEARCH=EZTP.sublib,TEMP
// ASSGN SYS001,...
// ASSGN SYS010,...
// ASSGN SYS008,...
// DLBL SORTWK1,,0,DA
// EXTENT SYS001,volser,,,start,lgth
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// DLBL INREC,,0,SD
// EXTENT SYS008,volser,,,start,lgth
// EXEC TESTPGM
 ...optional CARD input...
/*
/&
* $$ EOJ

The following JCL can be used for executing CA-Easytrieve Plus with DLI.
* $$ JOB JNM=jobname
// JOB EZTDLI
// UPSI 00000000
// ASSGN SYS011,nnn
// TLBL LOGOUT
// ASSGN SYS006,nnn
// DLBL INVPRT1,'INVENTORY',99/365,VSAM
// EXTENT SYS006,volser
// EXEC DLZRRC00,SIZE=512K
DLI,EZTPA00,psbname
 .
 ...CA-Easytrieve Plus DLI statements...
 .
 .
/*
/&
* $$ EOJ

When executing CA-Easytrieve Plus programs with both DLI and DB2 for VSE
statements, change the JCL statement given above from:
// EXEC DLZRRC00,SIZE=512K

to:
// EXEC DLZRRC00,SIZE=(AUTO,xxxK)

where xxxK is the amount of storage needed to execute your CA-Easytrieve Plus
program. xxxK is usually between 256 KB and 512 KB.

Examples E–73

JCL Examples for the VSE Operating System

The following example illustrates the VSE JCL to execute CA-Easytrieve Plus
with CA-IDMS under central version.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// DLBL IDMS,'cdms.library'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(EZTP.sublib,IDMS.sublib)
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,length
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,length
// EXEC EZTPA00
 ... CA-Easytrieve Plus source statements ...
/*

The following example illustrates the VSE JCL to execute CA-Easytrieve Plus
with CA-IDMS under local mode.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// DLBL IDMS,'cdms.library'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(EZTP.sublib,IDMS.sublib)
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,length
// ASSGN SYS004,DISK,VOL=volser,SHR
// DLBL idmsdb,'your.database',,DA
// EXTENT SYS004,volser,,,start,length
// ASSGN SYS005,DISK,VOL=volser,SHR
// DLBL idmsdb,'cdms.dictdb',,DA
// EXTENT SYS005,volser,,,start,length
// ASSGN SYS009,cuu
// TLBL sysjrnl,'cdms.tapejrnl',,volser,,f
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,length
// EXEC EZTPA00
 ... CA-Easytrieve Plus source statements ...
/*

E–74 Reference Guide

JCL Examples for the VSE Operating System

The following example illustrates the VSE JCL to execute a previously compiled
and link edited CA-Easytrieve Plus program with CA-IDMS under central
version.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// DLBL IDMS,'cdms.library'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(EZTP.sublib,IDMS.sublib)
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,length
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,length
// EXEC TESTPGM
 ... CA-Easytrieve Plus source statements ...
/*

The following example illustrates the VSE JCL to execute a previously compiled
and link edited CA-Easytrieve Plus program with CA-IDMS under local mode.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// DLBL IDMS,'cdms.library'
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(EZTP.sublib,IDMS.sublib)
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,length
// ASSGN SYS004,DISK,VOL=volser,SHR
// DLBL idmsdb,'your.database',,DA
// EXTENT SYS004,volser,,,start,length
// ASSGN SYS005,DISK,VOL=volser,SHR
// DLBL idmsdb,'cdms.dictdb',,DA
// EXTENT SYS005,volser,,,start,length
// ASSGN SYS009,cuu
// TLBL sysjrnl,'cdms.tapejrnl',,volser,,f
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,length
// EXEC TESTPGM
 ... CA-Easytrieve Plus source statements ...
/*

Examples E–75

JCL Examples for the VSE Operating System

The following example illustrates the JCL necessary to execute CA-Easytrieve
Plus with DB2 for VSE.
* $$ JOB JNM=jobname
// JOB jobname
// UPSI b
// DLBL EZTP,'your.eztp.library'
// EXTENT ,volser
// ASSGN SYS001,DISK,VOL=volser,SHR
// DLBL SORTWK1,,0
// EXTENT SYS001,volser,,,start,lgth
// ASSGN SYS010,DISK,VOL=volser,SHR
// DLBL EZTVFM,,0,SD
// EXTENT SYS010,volser,,,start,lgth
// DLBL SQLLIB,'your.pansql.library',0,SD
// EXTENT ,volser
// LIBDEF PHASE,SEARCH=(SQLLIB.sublib,EZTP.sublib)
// EXEC EZTPA00,SIZE=512K
PARM USERID('user-id' 'password')
 ... CA-Easytrieve Plus DB2 for VSE source statements ...
/*
/&
* $$ EOJ

Note: When executing a CA-Easytrieve Plus program with DB2 for VSE, no JCL
changes are required for Multiple User Mode. For the Single User Mode of DB2
for VSE, however, you should specify the SIZE=(AUTO,xxxK) parameter on
your JCL EXEC statement, where xxxK is the amount of storage required for
normal CA-Easytrieve Plus execution. The xxxK value is usually between 256 KB
and 512 KB.

Macro Libraries

When including macros in your program, you must have JCL that refers to your
macro libraries. For example, PANDD1 provides access to CA-Easytrieve Plus
macros stored in a CA-Panvalet library. MASTER1 provides access to macros
stored in a CA-Librarian library. If you are using a VSAM macro library, use
filename PANDD. If you are using an SSL macro library, use a LIBDEF to define
the source library you want to search for macro members. See the Getting Started,
or your systems administrator for details.

E–76 Reference Guide

Appendix

F Four-Digit Year Support

You can use the full four-digit year format on your CA-Easytrieve reports.

In addition, two macros, DATECONV and DATEVAL, assist in date conversion
efforts. These macros can be used to convert your dates from a two-digit year
format to a four-digit year format, as well as to determine which format your
dates are in to begin with.

Obtaining a Four-Digit System Date

There is a system-defined field called SYSDATE-LONG. When used in your
CA-Easytrieve program, SYSDATE-LONG provides the system date with a
four-digit year. The format of the returned date is determined by the DATE
option in your Options Table.

Printing a Four-Digit Year on Reports

The options SHORTDATE and LONGDATE on the REPORT statement enable
the printing of either a two-digit or a four-digit year when a date is printed on
reports. The default date format is specified through the LONGDTE option in the
Options Table.

The default is LONGDTE=NO that prints a two-digit year. To get four-digit
years on report dates, either change the Options Table to LONGDTE=YES or
specify LONGDATE on your REPORT statement.

DATECONV
The DATECONV routine converts a date-in-one format to any other date format.
For example, you can convert month-day-year to year-month-day, Julian to
Gregorian, and similar date conversions.

Syntax

Four-Digit Year Support F–1

%DATECONV date1 format1 date2 format2 [THRESHOLD value]

DATECONV

Parameters

date1

Specify the name of the field containing the date to be converted. The date in this
field must be in the format specified by format1. The name of any previously
defined numeric field is valid.

format1

Specify the format of the date1 field. Format1 is a literal description of pairs of
letters. The letters indicate positions, as follows:
MM = month
DD = day
YY = year
CC = century

The value of date1 is not checked for a valid date in conjunction with the
specified format. However, CC always maintains the value specified in
accordance with the THRESHOLD parameter. If you want date validation, use
the DATEVAL routine before using DATECONV. The only valid Julian format is
YYDDD.

The following are some, but not all, of the valid formats:
DDMMYY
MMDDYY
MMDDCCYY
YYMMDD
YYDDD (Julian)
CCYYMMDD
CCYYDDD
DDMMCCYY

date2

Specify the name of the field to which the converted date is written. The date is
written in the format specified by format2. A valid name is any previously
defined field.

format2

Specify the format for the date2 field.

[THRESHOLD value]

This optional parameter establishes the upper end of a 100-year range in the 20th
and 21st centuries, used in converting YY to CCYY.

F–2 Reference Guide

DATEVAL

For example, if THRESHOLD if 40, the lower boundary is 1941 and the upper

Four-Digit Year Support F–3

date, the field DATEVAL-FLAG is set to the value YES. If the date field is
invalid, the DATEVAL-FLAG is set to the value NO.

boundary of the range is set to 2040. When converting YY to CCYY, each year is
assigned a two-position century, based on the range established by
THRESHOLD. The default value for THRESHOLD is 0. This causes all dates to
have a range of 1901 through 2000.

If year is 52 when THRESHOLD is 40, century is 19; if year is 21, century is 20.

Valid values for THRESHOLD are 0 through 99.

Operation: INLINE

DATECONV generates no output and can be used alone or with other routines
and/or CA-Easytrieve Plus logic.

Operation: Database

No change in the specification of parameters is required to use DATECONV
with database files.

Example

The following is an example of DATECONV:

Input
FILE ...
 JULIAN-DATE 1 5 N
 GREG-DATE W 6 N
 ...
JOB ...
%DATECONV JULIAN-DATE YYDDD GREG-DATE YYMMDD
...

Results

The Julian date in the field name JULIAN-DATE is converted to Gregorian
format and the result is stored in the field named GREG-DATE.

DATEVAL
The DATEVAL routine examines the content of a specified date field for a valid
date in accordance with a specified date format. If the date field contains a valid

DATEVAL

Syntax

F–4 Reference Guide

respect, the YY (year) portion of the date controls the CC (century) portion in
accordance with the THRESHOLD value.

%DATEVAL field format [THRESHOLD value]

Parameters

field

Specify the name of the field that contains the date being validated. Valid names
include any previously-defined numeric field.

format

The format for the comparison is a literal description of pairs of letters. The
letters indicate positions, as follows:
MM = month
DD = day
YY = year
CC = century

You can specify the letter pairs in any order. YY must be specified whenever you
specify CC. The only valid Julian format is YYDDD.

The following are valid formats:
MMDDYY
MMDDCCYY
YYMMDD
YYDDD (Julian)

[THRESHOLD value]

Specify a value that establishes the upper end of a one-hundred-year range in the
20th and 21st centuries used to control the CC portion of generated dates.

For example, if THRESHOLD is 40, the upper boundary of the range is set to
2040 and the lower boundary is 1941. When converting YY to CCYY, each year is
assigned a two-position century based on the range established by
THRESHOLD. The default value for THRESHOLD is 0. This causes all dates to
have range of 1901 through 2000.

In this example, if year is 52, century is 19; if year is 21, century is 20.

It is important that the THRESHOLD value be correct for the range of dates to be
generated. For example, if DATEVAL is invoked to validate dates between the
years 1949 and 1952 and THRESHOLD is 50, the years 1949 and 1950 become
2049 and 2050, while the years 1951 and 1952 remain 1951 and 1952. In this

DATEVAL

General rules for specifying THRESHOLD values are:

■ If the dates to be generated do not exceed the year 2000, specify a
THRESHOLD default to a value of 0.

■ If the dates exceed the year 2000, choose a THRESHOLD high enough to
generate correct dates in the 21st century, but not so high as to convert dates
from the 20th century to the 21st century.

■ When dates to be generated do not involve calculations for century, specify a
THRESHOLD default to a value of 0.

■ Valid values for THRESHOLD are 0 through 99.

■ The THRESHOLD value is ignored if you provide a century value (CC).

Operation: INLINE

The date field is compared to the specified format. For comparison to be valid,
the respective MM, DD, YY, and CC fields must contain valid values. For
example:

■ If the date field contains 043184, and the format field contains MMDDYY,
comparison is invalid because the DD (day) portion of the date exceeds 30
for the month of April.

■ If the date field contains 022979, comparison is invalid, because 1979 is not a
leap year.

DATEVAL does not produce a report.

■ If the date field contains a valid date, an internal field DATEVAL-FLAG is
set to the value YES.

■ If the date field is invalid, the DATEVAL-FLAG is set to the value NO.

To perform further processing activities, you must code CA-Easytrieve Plus logic
following the invocation of DATEVAL. You can code IF statements that test the
DATEVAL-FLAG field.

For example, you can print a report of invalid dates, write all records with valid
dates to an output file, and perform further processing of the invalid dates, or
any combination of events. The example demonstrates coding IF, DISPLAY, and
END-IF statements.

Operation: Database

Four-Digit Year Support F–5

No change in the specification of parameters is required to DATEVAL with
database files.

DATEVAL

Example

The following is an example of DATEVAL:

Input
FILE ...
 DATE 1 6 N
 INVOICE-NUM 7 4 P
 ...
JOB ...
%DATEVAL DATE MMDDYY
IF DATEVAL-FLAG EQ 'NO'
 DISPLAY +5 INVOICE-NUM +5 DATE
END-IF
...

Results

This example prints the invoice number and date for every record with an
invalid date, according to the format MMDDYY.
2983 083781
3953 023072
4263 063184
5337 131278
7654 000000

F–6 Reference Guide

 Index–1

annotating summary lines, D-22

apostrophe ('), 2-12, 2-21

 Index

$

$ edit mask, 4-30, 4-31

&

&, 15-11

*

* edit mask, 4-30, 4-31

* field location, 4-18, 4-24

+

+/- continuation characters, 2-11

2

24-bit mode, 13-3

3

31-bit mode, 13-3, D-2

9

9 edit mask, 4-30

A

ABEXIT, 3-2, 3-5, D-1

abnormal termination, 14-13

ACCESS
code, 15-3
record, 15-5

access modes
data locate, 11-2
data move, 11-2
macro library storage, 15-3

activity within programs
data reference, 4-2, 4-34
DEFINE, 4-15
field definition, 4-15
functions, 2-1, 5-1
logic, 2-5
PROC coding, 9-5

addition. See arithmetic

address, record, 11-3

AF2, D-23

AFTER-BREAK procedure, 10-7, 10-62, 10-68

AFTER-LINE procedure, 10-7, 10-62, 10-65

ALL31, D-2

alphabetic conversion literals, 2-15

ALPHABETIC test, 7-9, 7-10

alphanumeric subjects, 7-5

ALTSEQ, 3-5, 3-12, D-2

AND, combined conditions, 7-3

arithmetic BUFNO, 4-13, D-3

Index–2 Reference Guide

allocation, 4-13, 11-5
BUFNO, 4-13
default, 4-13
I/O, D-3

CMS minidisk, file mode, D-4

COBOL

assignment statement, 6-1
averages, 10-67
decimals, 6-3
expressions, 6-1
leading zeros, 4-31
moving numbers, 6-1
negative numbers, 4-32
operators, 2-21
parentheses, 6-2
percentages, 10-67

array. See tables and arrays

ASA (OS/390), 4-10

assembler subprogram links, 13-5

assignment statement
function, 6-1
syntax, 6-4

automatic file input
controlled statement use, 11-2
filename qualifier, 4-34
JOB, 5-2, 11-1
SORT, 11-1
synchronized input, 5-3

B

BAL, links, 13-5

BEFORE parameter (SORT), 9-4

BEFORE-BREAK procedure, 10-7, 10-62, 10-67

BEFORE-LINE procedure, 10-7, 10-62, 10-65

BIND (SQL parameter), 3-5, 3-10

bit manipulation, 1-4, 6-1

blank-when-zero displays, 1-4, 4-17, 4-23

block-control-word, 11-3

BLOCKO installation option, D-3

branching logic, 7-1, 11-4

BREAK, 1-12, 7-10, 10-44

BREAK-LEVEL, 7-10, 10-44

buffers

BWZ. See blank-when-zero displays

C

CA-Corporate Tie, 11-22

CA-Datacom/DB parameters, 3-11

CA-Earl exit, E-55

CA-IDMS IDD interface, 6-16

CA-IDMS interface
automatic file input, 5-2
automatic path processing, 11-1
RESET to zero option, 4-6
subschema-name, 4-3, 4-6
update functions, D-25

CALCDUP installation option, D-3

CA-Librarian, 15-4, D-11

CALL statement
passing parameters, 13-9, 13-12
RETURNS parameter, 13-12
syntax, 13-11

capabilities, 1-3

CA-Panvalet
macro library, D-11
macro storage, 15-3, 15-5

CARD
device types, 4-10
files, 11-3, 11-5, 11-6
record format, 4-12
syntax, 4-3

CASE statement, 7-25, 7-27

CBLCNVRT macro, A-1

CGEN messages, B-43

character sets, 2-8

CHECKPOINT, JOB statement, 5-4

CHKP-STATUS, 11-4

CISIZE (VSE), 4-12

CLIST, 3-5, 3-8, 14-8, D-4

environment, 3-5, 3-9 currency symbol, D-13

 Index–3

syntax, 4-32

CREATE option, 4-3, 4-6

links, 13-4
subprogram links, 13-5

coding
convention, E-1
program statements, 2-2

collating sequence table, D-2

column separation, SPREAD, D-20

combined conditions, 7-3

comma (,), use of, 2-12, 2-21

comment statements, 2-11

comparison, varying length fields, 7-3

COMPILE, 3-1, 3-5, 3-6

compiler
directives, 14-2
length of output lines, D-10
work file, D-15

compiler listings
CLIST, 3-8
COMPILE, 3-6
overview, 14-3
PMAP, 3-8

COMPNME installation option, D-4

COMSTR installation option, D-5

conditional expressions, 7-1, 7-3

CONSOLE, D-17

continuation characters, 2-11

control
breaks. See reports
code, security, 15-3

CONTROL
print carriage, 8-3
record, 15-3
reports, 10-41
statement, 7-10, 10-23, 10-39, 10-41

controlled file input, 8-1, 11-1, 11-2

CONTROLSKIP, 1-13, 10-15

COPY statement
DLI, 4-33
field duplication, 1-4, 4-2, 4-32

current record count, 1-3

D

data
access mode, 11-2
map, 14-9, D-7
reference, 4-34
strings, 12-15

data definition
data reference rules, 4-34
delimiters, 2-12, 2-21
FDKLDK reference check, 3-8
fieldname qualifiers, 4-34
fields. See field definitions
files. See FILE statement
format, 4-19
indexing, 4-35
library. See library
names, 2-13

database
CA-IDMS interface, 4-3, 4-6, 11-1
FILE statement, 4-2
IMS/DLI interface, 4-4, 4-5, 4-33

DATE
installation option, D-5
PARM statement, 3-6
report. See SHORTDATE. See LONGDATE
system. See SYSDATE

DATEADJ installation option, D-5

DATECONV, F-1, F-3

DATEMLC installation option, D-6

DATEVAL, F-3

DB2 parameters, 3-10

DBCS syntax, 4-17

Index–4 Reference Guide

INDEX, 4-22
library statement, 4-15, 4-17, 4-24
record layouts, 4-24

subprogram LOADing, 13-2

Double Byte Character Set. See DBCS

capabilities, 1-3
character sets, 2-8
conditional expressions, 7-3
data formats, 2-20
format hexadecimal literals, 2-15
format literals, 2-14
options module, 14-3
reporting restrictions, 10-5
subjects, 7-6

DBCSCODE parameter
FILE statement, 4-4, 4-14
PARM statement, 3-2, 3-6

DCBEXCD1, 11-3

DDname, sort messages, D-18

DEBUG
CLIST, D-4
debugging aid, 1-6
DMAP, D-7
FLDCHK, D-9
FLOW, D-9
FLOWSIZ, D-9
NOCLIST, D-4
NODMAP, D-7
NOFLDCHK, D-9
NOFLOW, D-9
NOPMAP, D-15
NOSTATE, D-22
NOXREF, D-27
output, 3-2, 3-8
parameter of PARM statement, D-4, D-27
PMAP, D-15
STATE, D-22
work files, 10-71
XREF, D-27

debugging, 1-6. See also error messages

decimal numbers, 4-21, 4-23, 6-3

decision logic, 7-1, 11-4

DEFER, 4-13, 11-5

DEFINE statement
activity statement, 4-15, 4-17
edit masks, 4-30
examples, 4-24
field definitions, 4-16, 4-29
HEADING, 4-22, 10-32

with BWZ, 4-23

DEVICE, 3-2, 3-9, 3-12, 3-17, D-6

device type
default, D-6, D-12
for CA-Panvalet macro library, D-11
VFM overflow file, D-26

DIAG, 3-5

diagnostic format, 14-7

diagnostics. See error messages

DISK installation option, D-6

DISPLAY statement
function, 4-10, 8-11, 10-1
report annotations, 10-60
syntax, 8-2

division, arithmetic, 2-21, 6-3

DLET, D-24

DLI
parameter of FILE statement, 4-3, 4-5
statement, 5-15
update function codes, D-24

DLISQL installation option, D-7

DLIV installation option, D-7

DMAP
DEBUG option, 10-71
debugging aid, 1-6
installation option, D-7
listing, 3-8
overview, 14-9

DO
and END-DO statements, 7-22
loop nesting example, 7-24
UNTIL, 7-23
WHILE

operation, 7-23
program control, 1-4

DOS/VSE environment
as host operating system, D-23
output, 1-3
PUNCH files, 11-8
record format, 4-11
storage, 13-2, 13-3

DOWN installation option, D-8 environment. See also PARM statement

 Index–5

ENVIRON installation option, 13-6, D-8 input/output, 4-9, 13-1
passing parameters, 4-9
VSAM, 4-14

DQSCGEN messages, B-43

DTLCTL installation option, D-8

DUPLICATE, 7-17

DUPS parameter of RETRIEVE statement, D-3

DYNAMIC (SQL parameter), 3-10

E

EBCDIC
alphabetic literals, 2-13
DBCS conversion, 1-7, 6-9
format hexadecimal literals, 2-14

edit characters, numeric, D-13

edit masks
BWZ, 4-23
currency, 4-30, 4-31
decimal, 4-23
default, 4-24
DEFINE, 4-17, 4-30
editing rules, 4-30
function, 4-30
HEX, 4-24
installation defined, D-25
MASK, 4-22
negative numbers, 4-32
social security number, 4-24
user-defined, 4-22
Z, 9, *, $, -, 4-30

ELSE, 7-18

ELSE-IF, 7-18

END delimiter, CARD option on FILE statement, 4-10

End of job. See FINISH/START

END record, 14-2

END-CASE, 7-25

END-DO, 7-23

END-IF, 7-18

ENDPAGE procedure, 10-7, 10-62, 10-69

END-PROC, 9-1

customizing, 3-1
definition, 2-1, 2-2, 2-5, 3-1, D-1
types, 1-3

ENVIRONMENT COBOL parameter
JOB statement, 5-2, 5-4, 13-6
PARM statement, 3-2, 3-9

ENVIRONMENT parameter, 13-6

environment, options table
COBOL environment, 13-6
parameters, D-1
WKDSNPF, 10-71

EOF. See FINISH/START

EOF (end-of-file), POINT statement, 8-8, 8-10

EQ, 7-4

ERASE, 3-5

error
analysis reports, 1-3, 1-6, 14-15
condition handling, 13-14

error messages
DQSCGEN, B-43
error analysis reports, 1-3, 1-6, 3-5
execution, 14-14
file status, 8-1
format, B-1
IDD interface, B-45
operating system, B-2
source program syntax, B-8
statement number, 3-9
subprogram exits, 13-14
syntax, 14-14
VSAM open error code, 4-7

evaluation rules
field class conditions, 7-10
field series conditions, 7-8

examples, E-11

EXECUTE, 7-32

execution listing, 14-13

exits, user
CA-Earl, E-55
FILE statement EXIT parameter, 4-3, 4-9
filetypes, 4-5

EXITSTR installation option, 3-2, 3-9, D-8 S storage fields, 10-61, 10-67

Index–6 Reference Guide

packed decimal, 4-19, 4-29
qualifier, optional, 4-34
redefine, 4-18, 4-25

EXIT, 4-3, 4-9, 13-1, 13-9, 13-10
filenames

rules for, 4-4, 4-34

EXTENDED parameter, FILE statement, 4-3, 4-13

extended reporting options module, 14-3

EZTPAQTT default modname, D-3

EZTPIDD statement, D-25, D-26

EZTPOPT environment options table, D-1

EZTPX01, 4-36, 14-2

EZTPX03, 14-3

EZTPX04, 14-3

EZTPX05, 14-3

EZTVFM
OS/390 file, E-58
VSE files, E-69

F

field
bits condition, 7-2, 7-13
class condition, 7-2, 7-9
name prefixes, 4-34
redefine, 4-18, 4-25
relational condition, 7-2, 7-4
series condition, 7-2, 7-7, 7-8

field definitions
alphanumeric, 4-19
assignment statement, 6-4
binary, 1-4, 4-19, 4-29
copying, 4-32
data reference rules, 4-15, 4-34
decimal, 4-29, 6-3
DEFINE. See DEFINE statement
edit masks, 1-4
example data descriptions, 4-24
fieldnames, 4-15, 4-34
indexing, 4-35
location

* value, 4-17, 4-18, 4-24
defining, 4-18
redefining, 4-18, 4-25

moving characters, 6-13
moving numeric values, 6-1
numeric, 6-3
overlay redefinition, 4-18, 4-25

signed fields, 4-29
system-defined fields, 4-35, 5-15, 11-3
unsigned packed, 1-4, 4-20, 4-29, 4-30
varying length fields, 4-26, 10-17
working storage. See working storage
XREF listing, 3-9
zoned decimal, 4-19, 4-29, 6-5

fieldnames, 4-15, 4-16

fields
non-quantitative, 4-19, 4-29
quantitative, 4-19, 4-21, 4-29, 10-41
signed, 4-29, 10-41
unsigned, 4-29

file
maintenance, 1-5
mode, CMS minidisk, D-4
presence condition, 7-2, 7-14, 7-16
records length, 11-2
status report, 1-3

file processing
automatic. See automatic file input
control breaks, 1-5
controlled. See controlled file input
data access modes, 11-2
data availability tests, 11-4
error analysis report, 1-3
error conditions, 11-4
FILE-STATUS, 8-1, 11-3
ISAM files, 11-8
keyed, 11-15
match/merge, 1-3
record address, 11-3
RECORD-COUNT, 11-3
RECORD-LENGTH, 11-3
SAM files, 11-5
synchronized, 1-3
VSAM files, 11-10

FILE statement
BUFNO override, D-3
CA-IDMS interface, 4-3, 4-6
CARD option END delimiter, 4-10
coding, 4-2
creating files, 2-5
DEFER override, 11-16
DEVICE, D-6
device types, 4-9
DLI, 4-3, 4-4

XREF listing, 3-9 GET statement, 5-15, 8-1, 8-8, 8-9, 11-1
filetype, 4-3, 4-5
modify, 4-14
MODIFY, 4-9, 13-9, 13-10
overlay field redefinition, 4-25
parameters, 4-4
PUNCH files (VSE), 11-8
summary file processing, 10-58
syntax, 4-2, 4-3, 4-4
TABLE, 4-12, D-24
TAPE, D-16
VSAM, 11-10
work files, 10-71
WORKAREA, 4-12

FILE statistics, LIST, D-10

files
summary, generating, 10-58
working storage. See working storage

FILE-STATUS, 8-1, 11-3

filetypes processed, 4-5

FILL, MOVE statement parameter, 6-13, 6-15

FINAL, REPORT control statement, 10-23

FINISH/START, 5-2, 5-3, 9-4

FIRST-DUP, 7-17

FLDCHK, 3-5, 3-8, D-9

FLOW
installation option, D-9
table, 1-6
to activate trace, 3-9

FLOWSIZ installation option, D-9

font definition, 4-22, 10-27, 10-30

format and conversion rules, 2-18

format, data, 4-19

forms. See output specification

FORTRAN, links, 13-4, 13-8

four-digit year support, F-1, F-3

free storage, D-19

FULLTRK, 4-11, 11-5

GETDATE macro, E-10

GETVIS space, D-8

glossary table generation, A-4

GOTO statement, 7-27

GQ, 7-4

GR, 7-4

GT, 7-4

H

header shift code, 2-8

HEADING
(DEFINE statement), 4-17, 4-22
statement, 10-27, 10-32

hexadecimal
arithmetic fields, 6-7
DISPLAY HEX, 8-5, 10-60
edit mask, 1-4, 4-24
hex dump, 1-5
literals, use of, 2-14
padding fields, 6-3

HIGHEST-BREAK, 1-12, 7-10, 10-44

HIGH-VALUES test, 7-11

Hiragana, 2-17

host disk files, 4-7, 4-8, 11-22

I

I/O buffer, D-3

IBM sort options, DBCS, 5-9, 10-19

ICCF, 1-3

 Index–7

G

GE, 7-4

IDD interface ISAM files

Index–8 Reference Guide

integrated data dictionary. See IDD interface

internal work file, prefix, D-27

FINISH, 9-3
function, 5-1
KEY, 5-3
printing files, 10-3

invoked as exit, D-9
messages, B-45
overriding VERSION, D-26
processing MOVE LIKE statement, 6-16

IDDEXIT installation option, D-9

IDMSNAM installation option, D-9

IF statement
conditional expressions, 7-1
controlling execution, 7-18
nested, 1-4
program control, 2-5
synchronized file processing, 11-19
syntax and logic, 7-19
usage, 7-20

IMS/DLI interface
automatic file input, 5-2
COPY statement, 4-33
EXIT option, 4-9
filenames, 4-4
FILE-STATUS field, 11-3
filetypes, 4-5
processing, 4-9, 11-1
program control block, 4-5
program specification block, 4-5
RESET to zero option, 4-6

in-core binary search, 1-3

INDEX, 4-17, 4-22

indexing, 4-35

input specification
automatic. See automatic file input
controlled. See controlled file input
DISPLAY, 8-2
EXIT, 4-9
FILE statement, 4-2
filetypes, 4-5
GET, 8-8
MODIFY, 4-9
POINT, 8-9
STATUS, 8-1

INSTREAM. See tables and arrays

instream macros, 15-8

INTEGER (assignment statement), 6-6

automatic processing, 11-8
controlled processing, 11-8
EXIT option, 4-9
FILE-STATUS, 8-1
FILE-STATUS field, 11-3
filetypes, 4-5
processing, 11-1
random access, 8-12
random processing, 11-8
READ, 8-12
record format, 4-11
retrieval with POINT, 8-9
skip-sequential processing, 11-8

ISRT, D-24

J

JCL
examples, E-57, E-63, E-67
file OPEN errors, 11-4
JOB processing, 5-1
PARM, 14-2
VSAM file processing, 11-10

JEF sort options, DBCS, 5-12

JOB activities
automatic input, 5-2
coding, 5-1
DISPLAY, 8-6
execution, 5-1
function, 2-2, 2-5, 5-1
INPUT, 5-2
JOB procedures, 2-2, 5-2
labels, 2-13
NAME, 5-4
opening files, 11-5
processing logic, 5-5, 5-6
record availability, 11-18
report input modification, 10-64
STOP statement, 5-7
summary file processing, 10-58

JOB INPUT statement, 11-21

JOB statement
coding, 2-5
example, 11-17

sorting, effect on input, 5-2 LINESIZE, 10-11, 10-13, 10-29, 10-34, D-10

 Index–9

LINE-COUNT, 4-36

LINESIZ, 4-10, D-10

GETDATE macro, E-10
instream, 15-9
invoking, 15-2, 15-11
libraries, 15-3, E-67, E-76

START, 9-3
START/FINISH, 5-3
syntax, 5-2

K

KANJI parameters, 4-23, 4-36

Katakana, 2-16

keyed file processing, 11-15

keywords, 2-12, C-1

L

labels
mailing, 1-5, 10-5, 10-11, 10-38, E-19
number to print, D-2
reports, 10-38
statement, 2-13

LABELS
ACROSS, D-2
DOWN, D-8
NEWPAGE, D-13
parameter of REPORT statement, D-8, D-10

LABLSIZ installation option, D-10

LAST-DUP, 7-17

LE, 7-4

LE-enabled, 13-12

length of lines, D-10

LEVEL, control break, 10-42, 10-61

library
DEFINE, 4-1
fields. See field definitions
files. See FILE statement
function, 2-2, 4-1
password, 15-5
program placement, 2-1, 2-5
secured, 15-5

line separation, SPREAD, D-20

LINE statement, 10-28, D-20

LINK, 3-1, 3-2, 3-10

linkage conventions, 13-4

LIST
FILE, D-10
installation option, D-10
parameter of PARM statement, 3-2, D-10
PARM, D-10
printing controls, 3-10
statement, 14-5

listing control statements, 14-5

literals
numeric, 2-14

literals, use of, 2-12

LOADing subprograms, 13-2

LONG option of XREF, D-27

LONGDATE, 1-16, 10-15, 10-25, F-1

LONGDTE, 1-16, D-10

LOW-VALUES test, 7-11

LQ, 7-4

LS, 7-4

LT, 7-4

M

MAC#LIB installation option, D-11

MACDDN installation option, D-11

MACDEV installation option, D-6, D-11, D-12

macro
definition, 15-5
invocation statement, 15-1
library, 15-3, D-11
library support, D-12
processing, 15-10

MACRO installation option, D-12

macros
& prefix, 15-11
examples, E-2, E-3

names, 15-5 installation option, D-13
options table, 15-3
overview, 15-1
parameter substitution, 15-11
protection, 15-3, 15-5
syntax, 15-5, 15-6
user supplied, 15-3, 15-5

MACSYS# installation option, D-12

mailing labels, D-2, E-19

mapping, 1-7

MASK. See edit masks

MASTER
OS/390 file, E-58
VSE files, E-68

match/merge
operations, 11-16
processing, 1-3

MATCHED test, 11-19

MEMORY, 3-5

MEND macro statement, 15-8, 15-9

MIXED fields, conditional expressions, 7-3

mixed subjects, 7-5

mode considerations, 13-3

modes of operation, 2-1

MODIFY, 4-3, 4-9

MONEY installation option, D-13

MOVE LIKE statement, 6-1, 6-15

MOVE statement, 6-1, 6-13, 8-12

moving numbers. See assignment statement

MSG, 3-5, 3-12

MSTART macro statement, 15-9

multiple dimension arrays, 12-7

multiplication, arithmetic, 2-21, 6-3

N

NE, 7-4

statement, 14-6

NOCLIST installation option, D-4

NODMAP installation option, D-7

NODUPS parameter of RETRIEVE statement, D-3

NOFLDCHK installation option, D-9

NOFLOW installation option, D-9

non-quantitative fields, 4-19, 4-29

NOPMAP installation option, D-15

NOPRINT, 10-24

NORWD, 4-3

NOT, 7-17

NOVERIFY, 4-3

NOXREF installation option, D-27

NQ, 7-4

numeric
edit characters, D-13
subjects, 7-5

NUMERIC
installation option, D-13, D-14
test, 1-4, 4-29, 7-8, 7-9, 7-11

numeric data
decimals, 4-21, 4-23, 4-29, 6-3
literals, 2-14
negative numbers, 4-32

NUMWORK, 5-14, D-14

O

object of comparison, 7-5

OCCURS, 4-17, 4-24, 4-35

one-dimension arrays, 12-5

Index–10 Reference Guide

nesting DO loops, 7-23

NEWPAGE

operating P

 Index–11

overlay field redefinition, 4-18, 4-25
password (VSAM files), 15-5

PDS macro library, D-11

modes, syntax check/compile, 3-10

operating environments
DOS/VSE, 1-3
host, D-23
modifying (PARM statement), 3-1
OS/VS, 1-3
VM/CMS, 1-3

operating modes
card input, 11-6
object module production, 2-1
syntax check, 2-1
syntax check/compile, 3-6, 3-8

operational diagnostic messages, B-2

options module, 14-3

options table
modifying with PARM statement, 3-1
parameters, D-1
regeneration, 14-3

OR, combined conditions, 7-3

OS/390, D-23

OS/VS environment
macro storage, 15-3, 15-5
output, 1-3
subprogram LOADing, 13-2

OTHERWISE, 7-26

output specification
blocksize, 4-11
default, 10-72
DISPLAY, 4-10, 8-2
EXIT, 4-9, 13-8, 13-9
filetypes, 4-5
JOB, 5-1
PRINT, 8-10
PRINTER, 4-10
PUNCH, 4-10
PUT, 8-12
REPORT statement, 4-10, 10-72
sequential file output, 8-12
sorted records, 5-8, 5-15
statements, 8-1
STATUS, 8-1
subprogram exits, 13-1
terminal, 1-3

packed decimal data, 4-21, 4-29

PAGE, spelling, D-14

PAGE-COUNT, 4-36

PAGESIZ installation option, D-14

PAGEWRD installation option, D-14

PAN, D-12

PANDD, E-67, E-76

PANDD1
macro access, E-67, E-76
OS/390 file, E-58
VSE files, E-68

PANMODI, D-12

parameter
lists, 13-8
substitution, 15-11

parenthesis (), use of, 2-12, 2-21

PARM statement
ABEXIT, D-1
coding, 2-2, 3-1
DB2SSID, D-21
DEBUG, D-4, D-7, D-9, D-15, D-22, D-27
environment options table, D-1
examples, 3-17
EXITSTR, D-8
function, 2-1, 3-1, D-1
JCL, 14-2
LINK, 5-4
LIST, 14-7, D-10
overview, 3-1
parameters, 3-5
PREPNAME, 3-11, D-15
PRESIZE, D-15
SORT, D-17, D-18, D-19
SORTRLS, D-19
SSID, 3-16
syntax, 3-2
USERID, 3-16
VFM, D-26, D-27
WORK, D-14

PARM-REGISTER, 4-35

passed parameter list, 4-35

percent, calculating, 10-61, 10-67 START, 11-16

PERFORM statement, 1-4, 7-31, 9-3

period (.), use of, 2-12

PL/I, links, 13-4, 13-8

PLAN (SQL parameter), 3-10

PLANOPTS, 1-14, 3-11

PMAP
compiler listings, 3-8
debugging aid, 1-6
installation option, D-15
overview, 14-12

POINT statement
in sort procedure, 5-15
input/output control, 11-1
overview, 8-9
to position, 11-16
with sequential processing, 11-12

POP
facility, 1-7
statement, 14-6

prefix, internal work file, D-27

PREPNAME (PARM statement parameter), 3-11

PREPNME installation option, D-15

PRESIZE
installation option, D-15
length of work file, 3-11
parameter of PARM statement, D-15
system control parameter, 3-2

PRIMARY, 7-17

print positions, D-10, D-23

PRINT statement
function, 10-1, 10-2
labels, 10-5
overview, 8-10
program placement, 2-5
report input modification, 10-64
syntax, 8-10
work files, 10-2, 10-3, 10-7, 10-71

PRINTER
option, 4-3, 4-10
SORTMSR value, D-17

syntax, 9-1

proc-name, 7-31

PROCs (procedures)
BEFORE, SORT, 5-7, 5-14, 5-18
coding rules, 2-2, 9-5
function, 2-2
invoking, 9-3
labels, 2-13
loading user exit programs, 11-5
prescreening, 5-14
special-name procedures, 10-7, 10-62
START, JOB, 5-3
syntax, 9-1
XREF listing, 3-9

program
compilation statistics, D-24
structure, 2-1

programming languages, 13-1

programs
activity section, 2-1, 2-5
data reference rules, 4-34
environment definition, 2-1, 2-5, 3-1
invoking PROCs, 9-3
invoking user-written, 9-3
library definition, 2-1, 2-5
mapping, 1-7

programs, statements
labels, 2-13
order of coding, 2-2, 2-5
syntax rules, 2-7

PUNCH files, 4-3, 4-10, 11-3, 11-8

PUSH, 1-7, 14-6

PUT statement
in sort procedure, 5-15
input/output control, 11-1
not issued, 11-5
overview, 8-12
to add records, 11-13
to create load files, 11-10
to create output files, 11-7

Q

Index–12 Reference Guide

printer, extended reporting, 4-3, 4-13

procedure. See also PROCs
placement, 9-5

qualification of fields, 4-34

quantitative fields, 4-19, 4-21, 4-29, 10-41

R DTLCOPY, 10-51

 Index–13

coding, 2-5
CONTROL, 10-7, 10-17, 10-23, 10-39, 10-41
cross-reference listing of report-names, 3-9

file status report, 1-3
footers, 10-4, 10-69, 10-70
formatting, 1-5, 10-4, 10-7, 10-8, 10-17, 10-30

range, numeric test, 7-8

READ statement, 5-15, 8-1, 8-12, 11-1, 11-12

REAL, 3-5, 3-13

record
key, 11-21
length of compiler work file, D-15
relational condition, 7-2, 7-17

RECORD-COUNT, 11-3, 14-13

RECORD-LENGTH, 5-15, 11-3

records
duplicate keys, 1-3
formats, 4-3, 4-11
layout examples, 4-24
matching, 1-3
modification at exits, 4-9
multiple statements, 2-10
output, 4-10
SCANCOL option, 2-7
sorting, 5-13, 5-14, 5-18

recreating the options table, 14-3

redefine fields, 4-18, 4-25

register save area usage, 13-4

relational operators, 7-4

RELEASE, 3-5, 3-13

REPL, D-24

report
activity procedures, 8-6, 10-62
definition statements, 10-17
examples, E-1
line length, D-10
procedures, 10-60
work files, 10-71

REPORT activities
JOB, 5-1
PROC coding, 2-2, 9-5
report procedures, 10-60
REPORT procedures, 1-5, 2-2, 11-1
REPORT-INPUT procedure, 10-64
special-name procedures, 9-3, 9-4

REPORT statement

DTLCTL, 10-10, 10-41, 10-46, D-8
FILE, 10-71
HEADING, 10-7, 10-17, 10-27, 10-32
LABELS, D-2, D-8, D-13
LEVEL, 10-42, 10-60, 10-68
LINE, 10-7, 10-17, 10-28
LINESIZ, D-10
LINESIZE, 10-11, 10-13, 10-29, 10-31, 10-34, D-10
LONGDATE, 10-15, 10-25
LONGDTE=xxx, D-10
overview, 10-7
PAGESIZE, D-14
parameters, 10-9
PRINT, 8-11, 10-71
printer files, 4-10
PRINTER output, 10-8, 10-12
SEQUENCE, 10-7, 10-17, 10-18, 10-40, 10-71
SHORTDATE, 10-15, 10-25
SKIP, D-17
SPACE, D-20
special-name procedures, 10-7, 10-62
SPREAD, 10-37, D-20
SUM, 10-7, 10-17, 10-24
SUMCTL, 10-49, D-22
SUMFILE, 10-58, 10-60
SUMMARY, 10-41, 10-46
SUMSPACE, 10-57, D-23
syntax, 10-8
TAG, 10-50
TALLY, 10-10, 10-42, 10-58, 10-67
TALLYSIZE, D-23
testing aid parameters, 10-8
TITLE, 10-7, 10-17, 10-25, 10-31, 10-53
TITLESKIP, D-24
work files, 10-71

REPORT-INPUT procedure, 10-7, 10-62, 10-64

reports
alternate heading, 4-29
annotations, 10-60, 10-65, 10-68, 10-69, 10-70
column headings, 10-27, 10-32
content, 10-17
control breaks, 1-5, 10-23, 10-41, 10-58, 10-60,
10-61
control field titles, 10-53
control field totals, 10-41, 10-55
control report contents, 10-44
DBCS restrictions, 10-6
decimal positioning, 10-35

generating, 10-1 S

Index–14 Reference Guide

sort messages, D-17
dimension arrays, 12-5
file keyed processing, 11-21

SINXIT installation option, D-17

IRS forms, 10-36
line item positioning, 10-33
linesize, 10-4
mailing labels, 10-38
modifying data, 10-64
multiple, 1-6
output, 1-5
pagesize, 10-4
pre-printed forms, 10-36, 10-38
printing control field, 10-10
printing zeros, 4-31
renumbering pages, 10-23
sequenced, 1-6
subtotals, 1-5
summary files, 1-5, 10-9, 10-46, 10-58
TALLY, 10-10, 10-42, 10-58, 10-67, E-20, E-27
testing aids, 10-8, 10-16
titles, 10-4, 10-25, 10-30, 10-53
totals, quantitative field, 10-24
work files, 10-71

reserved
symbols, C-1
words, C-3

RESET
DEFINE statement, 4-24
syntax, 4-3
VSAM files, 11-10

RESTART, JOB statement, 5-4

RESTARTABLE, PARM statement, 3-11

RETAIN, 4-5, 4-14

retrieve a record, version number, D-26

RETRIEVE statement, D-3

RETURN-CODE, 4-35

RETURNS parameter, CALL statement, 13-12

revisions, 1-12

REWIND
installation option, D-16
syntax, 4-3

ROUNDED (assignment statement), 6-6

rounding results, 6-6

routing
printed output, 10-72

S working storage fields, 4-18, 10-61, 10-67

SAM files
automatic processing, 11-5
controlled processing, 11-5
defining, 4-14
device types, 4-9
filetypes, 4-5
processing, 11-1
PUNCH files, 11-8
PUT records, 8-12, 11-7
record format, 4-11
work file contents, saving, 10-72

SAMV, D-26

SCANCOL
in statement area, 2-7
installation option, D-16

schema, VERSCHM, D-26

SD type work data sets, D-19

SEARCH statement
syntax, 12-3
table access, 4-12, 12-3

SECONDARY, 7-17

secured libraries, 15-5

security, 1-7, 15-3, 15-5

segmented data, 12-13

SELECT statement, 5-18, 10-64, 11-16

selectable options, D-1

SEPDATE, D-16

SEPTIME, D-16

SEQUENCE statement, 10-18, 10-40

sequenced reports, 10-40

shift code systems, 2-8

SHORT option of XREF, D-27

SHORTDATE, 1-16, 10-15, 10-25, F-1

signed fields, 4-29, 10-41

single

SKIP messages, printing, 3-12

 Index–15

BEFORE, 9-3, 9-4
coding, 2-5
function, 5-7

installation option, D-21
SQL parameter, 3-15

SSL, D-11

installation option, D-17
parameter of REPORT statement, D-17
statement, 14-6

skip to channel 1, D-13

slashes, removing from SYSDATE, E-10

sort
work areas used, D-14
work data set logical assignments, D-19

SORT
ALL, D-17
CONSOLE, D-17
CRITICAL, D-17
DDname messages, D-18
DEFAULT, D-17
DIAG, D-18
ERASE, D-18
NO, D-17
NODIAG, D-18
NOERASE, D-18
NOTP, D-18
parameter of PARM statement, D-3, D-17, D-18,
D-19
PRINTER, D-17
REAL, D-18
routing messages, D-17
SORTSIZ, D-19
SORTWK#, D-19
SORTWRK, D-19
TP, D-18
VIRTUAL, D-18

SORT activities
function, 2-2, 2-5, 5-1
KEY sequencing, 5-14
opening files, 11-5
prescreening, 5-14
record length (F) parameter, 4-6
selective sorting, 5-18
sort procedures, 2-2, 5-7, 5-15, 11-1
subprogram loading, 13-2

SORT interface, 2-2, 3-5, 3-12, 3-13, 5-7

sort program
amount of storage, D-19
name, D-18
setting of options, D-18

SORT statement

syntax, 5-7
USING, 5-7, 5-8
WORK, 5-7, 5-14, D-14
work data sets, 5-14

SORTMSG installation option, D-17

SORTMSR installation option, D-17

SORTNAM installation option, D-18

SORTOPT installation option, D-18

SORTPRT installation option, D-18

SORTRLS installation option, D-19

SORTSIZ installation option, D-19

SORTSIZ, MAX, D-19

SORTWK# installation option, D-19

SORTWKn, VSE file, E-69

SORTWKnn, OS/390 file, E-59

sortwork data set, D-19

SORTWRK installation option, D-19

source statements, 2-1, 11-6, 15-3

SPACE
installation option, D-20
parameter of REPORT statement, D-20
test, 7-9, 7-11

special tests, 1-4

special-name report procedures, 9-4

SPREAD installation option, D-20

SPRTXIT installation option, D-20

SQL
access module, D-15
DB2, D-21
parameter of SSID, 3-15
parameters, 3-10
subsystem, D-21
supplemental diagnostic messages, B-47

SQLBIND, D-20

SQLSYNTAX, 1-14, 3-14, D-21

SSID
(PARM statement parameter), 3-16

standard reports, 10-30

START procedure, 11-16

START/FINISH
JOB, 5-2
parameters (JOB), 9-3

starting SYS number, D-12

STATE, installation parameter, D-22

statement
label, 7-28, 7-29, 7-30
number, D-22

statements
comment, 2-11
continuation (- or +), 2-11
delimiters, 2-12, 2-21
labels, 2-13, 3-9
multiple, coding, 2-10
source, 2-7
syntax, 2-7

static working storage, 10-61

STATUS, 8-1

STEPLIB, OS/390 file, E-60

STOP statement
function, 5-7
report proc warning, 10-60
syntax, 7-32

storage
management, 13-3
maximum amount, D-22
sort program, D-19
VFM buffer pool, D-27

STORMAX installation option, D-22

STRSRCH
database operation, A-10
inline operation, A-9
macro, A-8

subject
element, 2-17, 2-18, 2-20
of comparison, 7-4

subprograms
CALL exits, 13-1
EZTPX01, 4-36, 14-2
linking, 13-4
loading, 13-1

subschema, VERSCHM, D-26

subscripts, 12-10

subtraction, 2-21, 6-3

SUM statement, 10-24

SUMCTL, D-22

summary
files, 10-58
lines, annotations of, D-22

SUMSPACE, D-23

symbol references, C-3

synchronized file processing
file access, 1-3
input process, 11-18
overview, 11-15
record availability, 11-17
special IF statements, 11-19
updating a master file, 11-20

syntax
diagnostic messages, B-8
rules, 2-7

SYNTAX, 3-1, 3-5, 3-16

syntax check/compile operating mode, 3-8

SYS, 3-13

SYS number, starting, D-12

Index–16 Reference Guide

overview, 4-35

SYSDATE
GETDATE macro, E-10
in sort procedure, 5-15
inhibiting printing, 10-15
LONGDTE=xxx, D-10

printing current date, 10-31 file SEARCH method, 4-12, 12-2

 Index–17

edit masks, 4-24
external tables, 12-2
fields, 12-2

trace entries available, D-9

TRUNCATED (assignment statement), 6-6

removing slashes, E-10
year 2000 support, 1-16

SYSDATE-LONG
four-digit year, F-1
LONGDTE=xxx, D-10

SYSIN, 4-10, 11-6, E-57

SYSIN/SYSIPT exit, D-17

SYSIPT (VSE), 4-5, 4-10, 11-6, E-67

SYSLIN, OS/390 file, E-59

SYSLIST/SYSPRINT exit routine, D-20

SYSLNK, VSE file, E-70

SYSLST (VSE), 4-5, 10-72, E-68

SYSOUT, D-18, E-60

SYSPCH (VSE), 4-5

SYSPRINT, 8-2, 10-72, E-57

SYSPRINT/SYSLIST exit routine, D-20

SYSSNAP, OS/390 file, E-61

system
defined file fields, 4-36
facilities, 14-1

SYSTEM installation option, D-23

System Management Storage (SMS), 4-12

system-defined
fields, 4-35
file fields, 11-3

SYSTIME, 4-35

SYSUDUMP, OS/390 file, E-62

T

table
definition, 12-1
maximum number of entries, D-24

TABLE. See tables and arrays

tables and arrays
data string evaluation, 12-15

INDEX method, 4-22, 4-24, 12-5
instream tables, 12-2
multiple dimension arrays, 12-7
one-dimension arrays, 12-5
overview, 12-1
SEARCH statement, 12-3
sorting tables, 12-2
TABLE option of FILE, 12-4

TALLY
field size, D-23
number of items, 10-67
report field, 10-42
reports, E-20, E-27
summary file control, 10-58

TALLYSIZE
installation option, D-23
parameter of REPORT statement, 10-10, D-23

TAPE
parameter of FILE statement, D-16
VSE option, 4-3, 4-10

TBLMAX installation option, D-24

TERMINATION procedure, 10-7, 10-62, 10-70

test
alphabetic characters, 7-10
CONTROL break, 7-10
HIGH-VALUES, 7-11
LOW-VALUES, 7-11
numeric characters, 7-11
spaces, 7-11
special, 1-4
under mask, 1-4
valid DBCS characters, 7-11
zero characters, 7-11

TIME. See SYSTIME

TITLE statement
LONGDATE, 10-15, 10-25
SHORTDATE, 10-15, 10-25
spacing of, D-20

TITLESKIP installation option, D-24

top of form, D-13

top-to-bottom logic, 2-5, 5-1

TP, 3-5, 3-13

TSO, 1-3 VERSCHM installation option, D-26

Index–18 Reference Guide

VERPGM installation option, D-26

VERREC installation option, D-26

EXIT option, 4-9
filetypes, 4-5
KSDS, 4-6, 8-9, 8-12, 8-14, 11-10, 11-12

U

UNLOAD, 4-3

unsigned fields, 4-29

UNTIL, 7-22

UPDATE, 4-3, 11-13

update functions, D-25

updating
files, 4-6
master file, 11-20

UPDTDLI installation option, D-24

UPDTIDD installation option, D-24

UPDTIDM installation option, D-25

UPDTVS installation option, D-25

user converted literals, 2-17

userfiles
OS/390 files, E-62
VSE files, E-70

USERID (PARM statement parameter), 3-16

USERMSK installation option, D-25

user-written programs. See PROCs (procedures)

USING parameter, 4-3

utility
macros, A-1
programs, 14-2

V

V command codes, D-7

VALUE, 4-17, 4-24

variable length records, 11-2, 11-7

VARYING (DEFINE statement), 4-26, 10-17

varying length field, 4-21, 4-26, 7-3, 10-17

VERFILE installation option, D-25

version number, D-25, D-26

VFM. See virtual file manager

VFMDEV installation option, D-6, D-26

VFMSPAC installation option, D-27

VIRTUAL, 3-5, 3-13

virtual file manager
access method, 11-15
filetypes, 4-5
function, 1-6
overflow file device, D-26
PUT records, 8-12
RETAIN, 4-14, 11-15
SAM files, 11-15
space management, 1-6
spill area, 1-6
VFM files, 11-15
VFM PARM parameter, 3-2, 3-5, 3-16
work files, 1-6, 3-16

VS FORTRAN subprogram links, 13-8

VSAM
adding records to files, 11-13
automatic input, 11-2
automatic processing, 11-11
controlled processing, 11-12
CREATE, 4-6
deleting records, 11-14
exit processing, 4-14
FILE-STATUS field, 11-3
I/O exits, D-8
installation option, D-12
macro library, 15-3, 15-5, D-11
mass-sequential-insertion, 11-13
open error code, 4-7
PUT statement, 11-10
random access, 8-12
retrieval with POINT, 8-9
skip-sequential processing, 11-12
subprogram file exit loading, 13-2
update functions, D-25
updating records, 11-14

VSAM files
adding records, 11-13
creating, 11-10
defining, 4-14
ESDS, 11-10

loading, 4-3, 4-6 processing, 10-71
maintenance, 8-14
mass-sequential-insertion, 8-12
password, 4-3, 4-6
processing, 11-1, 11-3
PUT records to, 8-12
READ, 8-12
reloading, 4-6
RRDS, 4-6, 8-9, 11-10, 11-12
STATUS, 8-1
updating, 8-14, 11-2
VS filetype, 4-6
WRITE, 8-14

VSAM FILE-STATUS codes, 8-1

VSE operating system, E-67

VSEAF2, D-23

W

W field reset, 4-24

WHEN, 7-25

WHILE, 7-22

WKDSNPF, 4-4, D-27

work
areas used by the sort, D-14
data sets, D-19

WORK, 3-5, 3-13, D-14

WORKAREA, 4-9, 4-12, 4-14

working storage
allocation, 4-9, 4-14, 11-5
data access mode, 11-2
data set prefix (WKDSNPF), 4-4, 10-71
default, 10-71
DEFINE statement, 4-15
dynamic file generation, 10-71
fieldnames, 4-16, 4-18
filenames, 4-4, 10-71
initializing, 1-4, 4-26, 5-3
library, defining, 4-2, 4-16
mapping work file contents. See DMAP
naming files, 4-4, 4-16, 10-71
printing work files, 10-3

report procedure fields, 10-60
reports, 10-42
S fields, 4-18, 10-61, 10-67
sort data set, 5-14
sorting, 5-14, 5-15
static, 10-61
system work file, 10-71
temporary

creating, 1-3
virtual file manager, 1-6, 11-15
virtual files, 4-5

VALUE, 4-24, 4-26
W fields, 4-18, 4-24
WKDSNPF, 4-4, 10-71
WORKAREA, 4-9, 4-12
zeros/blanks, 4-26

wrapping shift code, 2-8

WRITE statement, 5-15, 8-1, 8-14, 11-1, 11-2, 11-13

X

X edit mask, 4-30

XREF, 3-9, 14-12, D-27

Y

year 2000 support, 1-16

Z

Z edit mask, 4-30, 4-31, 4-32

zero
blank-when-zero, 4-17, 4-23
leading zeros, print/replace/suppress, 4-31
testing, 1-4, 8-1
work data set indicator, 5-14

ZERO test, 7-9, 7-11

 Index–19

	Advantage CA-Easytrieve Plus Reference Guide
	Contents
	Chapter 1: Overview
	Topics
	Related Publications
	Environment
	Capabilities
	File Access
	Character Set Support
	Field Definition
	Logic Process
	File Output
	Report Output
	Virtual File Manager
	Debugging Capabilities
	Current Technology

	Enhancement Summary
	6.0 Enhancements
	INTEGER/ROUNDED/TRUNCATED on Assignment Statement
	Working Storage Reinitialization
	Single File Keyed Processing
	Varying Length Fields
	Enhanced Data Map
	Enhanced PANVALET Macro Interface
	Enhanced Installation Procedures
	Enhanced DB2 Interface
	ORACLE Database Processing
	FILE Statement for SQL
	Extended Checkpoint/Restart Facility for IMS
	IDD Optional Start Location
	Virtual File Manager

	6.1 Enhancements
	CASE Statement
	DO UNTIL Statement
	ELSE-IF Statement
	Called Programs with 31-bit Address Support
	Integration with CA-Corporate Tie
	VSAM SUMFILE
	CA-IDMS Dynamic Loading
	Options Table Support of Date and Time Separator Characters
	List of Future Reserved Words
	Enhanced DB2 Interface
	Disk Drive Support
	Display Page Size
	IBM SMS BLKSIZE=0 Support
	IBM Dynamic Partitions for VSE/ESA Support

	6.2 Enhancements
	Expanded SQL Processing
	IF BREAK/HIGHEST BREAK Class Tests
	RETURN-CODE for VSE
	CA-Librarian Macro Support
	New CONTROLSKIP Parameter on the REPORT Statement
	Read Access to LINE-COUNT and PAGE-COUNT
	RESET Parameter on FILE Statement
	Default Disk Type (VSE Only)
	EVEN Parameter on DEFINE Statement
	HEADING Parameter in the SQL INCLUDE Statement
	WITH HOLD Option on SQL DECLARE CURSOR Statement (DB2 for OS/390 and z/OS Only)
	CONNECT Statement Improves Data Access
	SQLSYNTAX Parameter on PARM Statement
	PLAN Parameter on PARM Statement (DB2 for OS/390 and z/OS Only)
	PLANOPTS Parameter on PARM Statement (CA-Datacom SQL only)
	SELECT INTO Support (DB2 for OS/390 and z/OS Only)
	DB2 - DL/I Batch Support
	IDD Updating
	IDMS RETURN KEY Support
	SQL with CA-IDMS
	CA-Datacom SQL Support
	Four-Digit Year Support

	6.3 Enhancements
	Suppress Leading Zeroes
	Empty VSAM File Processing
	HIGH-VALUES/LOW-VALUES Reserved Words
	HTML Program Templates
	EZTOOL Date Routines
	Override Date Parameter
	Utility Macros

	6.4 Enhancements
	Running above 16 MB

	Chapter 2: System Overview
	Structure of a Program
	Environment Definition Section
	Library Definition Section
	Activity Definition Section
	Program Flow

	Syntax Rules
	Statement Area
	Character Sets
	Multiple Statements
	Comments
	Continuations
	Words and Delimiters
	Keywords
	Multiple Parameters
	Field Names
	Labels
	EBCDIC Alphabetic Literals
	Numeric Literals
	EBCDIC Format Hexadecimal Literals
	DBCS Format Literals
	DBCS Format Hexadecimal Literals
	MIXED Format Literals
	Alphabetic Conversion Literals
	Katakana Conversion Literals
	Hiragana Conversion Literals
	User Converted Literals
	Format and Conversion Rules
	Format Relationship Rules
	Identifiers
	Arithmetic Operators

	Chapter 3: Environment Definition
	PARM Statement
	Environment Modification
	Usage
	PARM Statement Syntax
	PARM Statement Parameters
	PARM Statement Examples

	Chapter 4: Data Definition
	FILE Statement
	Syntax
	Parameters
	File Type Parameters
	Device Type Parameters
	Record Format Parameters
	Examples

	DEFINE Statement
	DEFINE within an Activity
	File Fields
	Working Storage Fields
	Basic Field Definition
	DEFINE Syntax
	Parameters
	Data Format

	DEFINE Statement Examples
	Record Layouts
	Overlay Redefinition
	Working Storage Initialization
	Varying Length Fields
	Displaying Varying Length Fields
	Assigning and Moving Varying Length Fields

	Alternate Report Headings
	Signed/Unsigned Rules
	Signed
	Unsigned

	Edit Masks
	Editing Rules

	Leading Zeros
	Printing
	Suppressing
	Replacing

	Negative Numbers

	COPY Statement
	Syntax
	Example
	COPY Rules for Database Files
	Examples

	Data Reference
	Unique Name
	Qualification

	Indexing
	System-Defined Fields
	General Fields
	File Fields
	Report Fields

	Chapter 5: Processing Activities
	JOB Statement
	Syntax
	Parameters
	Job Flow

	SORT Statement
	Syntax
	Parameters
	Sorting Files
	Sort Procedures
	Sort Flow

	SELECT Statement
	Syntax
	Sorting a Selected Portion of a File

	Chapter 6: Assignments and Moves
	Arithmetic Expressions
	Syntax
	Operation
	Parentheses
	Evaluations

	Assignment Statement
	Format 1 (Normal Assignment)
	Format 2 (Logical Expression)
	Examples
	EBCDIC To DBCS Conversion
	Format 1 (Normal Assignment)

	MOVE Statement
	Syntax
	Format 1
	Format 2

	Variables
	Example

	MOVE LIKE Statement
	Syntax
	Operation
	IDD Processing of MOVE LIKE (CA-IDMS)

	Example

	Chapter 7: Decision and Branching Logic
	Conditional Expressions
	Simple Conditions
	Extended Conditions
	DBCS Considerations
	Varying Length Fields
	Combined Conditions

	Field Relational Condition
	Syntax
	Operation
	Subject
	Relational Operator
	Object

	Alphanumeric Subjects
	Numeric Subjects
	Mixed Subjects
	DBCS Subjects
	Example

	Field Series Condition
	Operation
	Subject
	Relational Operator
	Object

	Rules for Evaluation
	Example

	Field Class Condition
	Syntax
	Operation
	Subject
	Object

	Rules for Evaluation
	Example

	Field Bits Condition
	Syntax
	Operation
	Subject
	Relational Operator
	Object

	Example

	File Presence Condition
	Syntax
	Operation
	Subject
	Object

	Example

	File Presence Series Condition
	Syntax
	Operation
	Subject

	Example

	Record Relational Condition
	Syntax
	Operation
	Subject

	Example

	IF, ELSE-IF, ELSE, and END-IF Statements
	Syntax
	Operation
	Example

	DO and END-DO Statements
	Syntax
	Operation
	DO WHILE and END-DO
	DO UNTIL and END-DO

	Nesting
	Example

	CASE Statement
	Syntax
	Operation
	Example

	GOTO Statement
	Syntax
	Operation
	Example

	Statement Label
	Syntax
	Operation
	Example

	PERFORM Statement
	Syntax
	Operation
	Example

	STOP Statement
	Syntax
	Operation
	Example
	Conditional Execution
	Example
	Termination
	Example

	Chapter 8: Input/Output Specification
	DISPLAY Statement
	Syntax
	Format 1
	Format 2
	Format 3

	Parameters
	Format 1
	Format 2
	DISPLAY HEX

	Example

	GET Statement
	Syntax
	Operation
	Example

	POINT Statement
	Syntax
	Operation
	Example

	PRINT Statement
	Syntax
	Operation

	PUT Statement
	Syntax
	Operation

	READ Statement
	Syntax
	Operation
	Example

	WRITE Statement
	Syntax
	Format 1
	Format 2

	Example

	Chapter 9: Procedure Processing
	Procedure Syntax
	Syntax
	Operation

	Invoking Procedures
	PERFORM Statement
	Syntax

	START and FINISH Parameters (JOB)
	START
	FINISH

	BEFORE Parameter (SORT)
	BEFORE proc-name

	Special-name Report Procedures
	Procedure Placement
	Example

	Chapter 10: Report Processing
	Basic Report Structure
	PRINT Statement Processing
	PRINT Workfile Processing
	Report Formats
	Standard Format
	Top Margin
	Title Area
	Heading Area
	Report Body
	Bottom Margin

	Label Format
	DBCS Reporting Restrictions
	Report Definition Statements
	Structure of Report Definition

	REPORT Statement
	Syntax
	REPORT Statement Parameters
	Format Determination Parameters
	File Directing Parameters
	Spacing Control Parameters
	Testing Aid Parameters
	IMS-only Parameter

	DBCS/MIXED Considerations
	Varying Length Field Considerations

	Report Definition Statements
	SEQUENCE Statement
	Syntax
	Operation
	IBM-sort-options
	JEF-sort-options

	CONTROL Statement
	Syntax
	Operation

	SUM Statement
	Syntax
	Operation

	TITLE Statement
	Syntax
	Operation

	HEADING Statement
	Syntax
	Operation

	LINE Statement
	Syntax
	Operation

	Standard Reports
	Titles
	Headings
	Line Group
	Line Item Positioning
	Special Positioning
	Pre-printed Form Production
	SPREAD Option

	Label Reports
	CONTROL Statement

	Sequenced Reports
	SEQUENCE Statement

	CONTROL Reports
	Terminology
	Data Reference
	TALLY
	LEVEL
	BREAK-LEVEL
	IF BREAK/IF HIGHEST BREAK Processing
	Control Report Contents
	DTLCTL
	SUMCTL
	TAG

	DTLCOPY
	DTLCOPYALL
	Control Field Values in Titles
	Overflow of Total Values
	Controlling Overflow
	Summary File

	Report Procedures
	Coding Techniques
	Field Reference

	Special-name Report Procedures
	REPORT-INPUT
	BEFORE-LINE and AFTER-LINE
	BEFORE-BREAK
	AFTER-BREAK
	ENDPAGE
	TERMINATION

	Report Work Files
	Routing Printed Output

	Chapter 11: File Processing
	Control of Input/Output
	Data Access Modes
	Record Format
	CARD, PUNCH, and VSAM

	Record Addressability
	System-Defined File Fields
	Error Conditions
	Data Availability Tests
	Opening and Closing Files
	SAM Files
	SAM Input
	Automatic Processing
	Controlled Processing
	Card Input

	SAM Output
	Fixed-Length File Creation
	Variable-Length File Creation
	PUNCH Files

	ISAM Files
	Automatic Processing
	Controlled Processing
	Skip-Sequential Processing
	Random Processing

	VSAM Files
	File Creation
	VSAM Input
	Automatic Processing
	Controlled Processing
	Skip-Sequential Processing
	Random Input

	VSAM Record Addition
	Single Record Addition
	Mass-Sequential Insertion

	VSAM Record Deletion
	VSAM Record Update

	Virtual File Manager
	Synchronized File Processing
	Synchronized File Input
	Example
	Record Availability

	Special IF Statements
	MATCHED
	File Existence
	DUPLICATE, FIRST-DUP, and LAST-DUP

	Updating a Master File
	Single File Keyed Processing

	Host Disk Files
	Host Disk Definition
	Host Disk Formats
	Writing to the Host Disk File
	Host Disk File Processing
	Examples
	Static Parameter Specification
	Dynamic Parameter Specification
	Sending Report Output to the Host Disk

	Chapter 12: Table and Array Processing
	Table Definition
	Defining Tables

	SEARCH Statement
	Syntax
	Operation
	Searching Tables

	Single Dimension Arrays
	Index Attribute
	Example

	Multiple Dimension Arrays
	Subscripts
	Defining a One-Dimension Array
	Defining a Two-Dimensional Array
	Defining a Three-Dimensional Array
	Using Subscripts

	Segmented Data
	Data Strings

	Chapter 13: Subprograms
	Programming Languages
	Program Loading

	Storage Management
	Addressing Mode Considerations
	Linkage (Register Usage) Conventions
	Linkage Register Usage
	Register Save Area Usage
	Assembler Subprogram Linkage
	COBOL Subprogram Linkage
	ENVIRON Option and ENVIRONMENT Parameter
	COBOL ENVIRONMENT Operation
	COBOL Environment Rules

	VS FORTRAN Subprogram Linkage
	PL/I Subprogram Linkage

	Parameter Lists
	Parameter List Format
	Exit Parameter List

	CALL Statement
	Syntax
	Operation
	CALL Parameter Lists

	LE-Enabled Support
	Calling COBOL
	Calling Assembler
	Calling LE CEEExxxx Routines
	Calling PL/I
	File Exit Programs

	Error Condition Handling

	Chapter 14: System Facilities
	Compiler Directives
	End
	Syntax

	Utility Programs
	EZTPX01
	EZTPX03
	EZTPX04
	EZTPX05

	Compile Listing
	Header
	Statement Listing
	Listing Control Statements
	LIST
	Syntax

	NEWPAGE
	SKIP
	PUSH
	POP
	Example
	Diagnostic Format
	Parameter (PARM) Listing
	CLIST
	DMAP
	Field Group Header
	Logical Record Display (CA-IDMS)
	Record Display (DL/I)
	Field Header

	PMAP
	XREF

	Execution Listing
	File Statistics

	Abnormal Termination
	Diagnostic Messages
	Syntax Errors
	Execution Errors

	Error Analysis Report
	Cause A Data Exception
	Analyzing the Report

	Chapter 15: Macros
	Macro Invocation Statement
	Syntax
	Invoking Macros

	Macro Library
	Macro Library Security
	CA-Panvalet
	CA-Librarian
	Maintenance
	Security
	PDS/SSL
	USER
	VSAM

	Macro Definition
	Prototype Statement
	Syntax
	Operation
	Positional Parameters
	Keyword Parameters
	Prototype Examples
	Macro Body
	Macro Termination Command

	Instream Macros
	Syntax
	Operation
	Example

	Macro Processing
	Parameter Substitution
	Examples
	‘&’ and ‘.’ in a Macro

	Appendix A: Utility Macros
	CBLCNVRT
	Syntax
	Operation: Standalone-Report
	Operation: Database
	Limitations
	Glossary Table Generation
	Examples
	OS Creation of Glossary Table File
	DOS Creation of Glossary Table File
	Example Definitions

	STRSRCH
	Syntax
	Operation: Inline
	Operation: Database
	Notes

	Appendix B: Diagnostics
	Operational Diagnostic Messages
	Syntax Diagnostic Messages
	CBLCNVRT Messages
	DQSCGEN Messages
	IDD Interface Messages
	SQL Supplemental Diagnostic Messages

	Appendix C: Keywords
	Symbol References
	Reserved Words

	Appendix D: Options Table
	Selectable Options

	Appendix E: Examples
	Coding Conventions
	Inventory Sample File
	Personnel Sample File
	GETDATE Macro
	Basic Examples
	Example 1: Employees in Region 1
	Example 2: Proposed Salary Schedules
	Example 3: Employee Letters
	Example 4: Mailing Labels
	Example 5: Tally Reports
	Example 6: Phone Number Selection
	Example 7: Salary Tally Report
	Example 8: File Expansion
	Example 9: Average Regional Gross Salary
	Example 10: Central Region Employees
	Example 11: Inventory Report by City
	Example 12: Expanded Inventory Report
	Example 13: Error Correction
	Example 14: Inventory Reduction
	Example 15: Inventory File Update
	Example 16: Reorder Notification Report

	CA-Easytrieve/Earl
	Syntax
	Parameters
	Usage Notes
	Sample CA-Easytrieve/Earl Exit

	JCL Examples for the OS/390 and z/OS Operating System
	SYSIN
	SYSPRINT
	PANDD1
	MASTER1
	EZTVFM
	SORTWKnn
	SYSLIN
	SYSOUT
	STEPLIB
	sysctl
	sysjrnl
	sysidms
	idmsdb
	idmsdict
	SYSSNAP
	SYSUDUMP
	userfiles
	KJSRTBL
	KJSYSOUT
	KATTR
	JCL Examples: OS/390 and z/OS JCL Systems
	Macro Libraries

	JCL Examples for the VSE Operating System
	SYSIPT
	SYSLST
	PANDD1
	MASTER1
	EZTVFM
	SORTWKn
	SYSLNK
	userfiles
	CA-IDMS
	sysjrnl
	sysidms
	idmsdb
	idmsdict
	UPSI
	JCL Examples: VSE JCL Systems
	Macro Libraries

	Appendix F: Four-Digit Year Support
	DATECONV
	Syntax
	Parameters
	Operation: INLINE
	Operation: Database
	Example

	DATEVAL
	Syntax
	Parameters
	Operation: INLINE
	Operation: Database
	Example

	Index

